Migrants at Sea: Unintended Consequences of Search and Rescue Operations*

Claudio Deiana† Vikram Maheshri‡ Giovanni Mastrobuoni§

January 5, 2022

Abstract

The Central Mediterranean Sea is the world’s most dangerous crossing for irregular migrants. In response to mounting deaths, European nations intensified search and rescue operations in 2013. We develop a model of irregular migration to identify the effects of these operations. Leveraging exogenous variation from rapidly varying crossing conditions, we find that smugglers responded by sending boats in adverse weather and shifting from seaworthy boats to flimsy rafts. In doing so, these operations induced more crossings in dangerous conditions, ultimately offsetting their intended safety benefits. A more successful policy should restrict the supply of rafts, expanding legal alternatives migration.

Keywords: Central Mediterranean, sea crossings, international migration, undocumented migration, search and rescue operations, rubber boats, smugglers, migrants, Africa

JEL codes: F22 (International Migration); H12 (Crisis Management); K37 (Immigration Law); K42 (Illegal Behavior and the Enforcement of Law).

*We thank Cevat Aksoy, Samuel Bazzi, Giacomo Calzolari, Gordon Hanson, Tim Hatton, Andrea Ichino, Sandra Rojo and various seminar and conference audiences for their valuable feedback. Opinions expressed herein are those of the authors only and do not reflect the views of, or involve any responsibility for, the institutions to which they are affiliated. Any errors are the fault of the authors only.

† University of Cagliari, claudio.deiana@unica.it
‡ University of Houston, vmaheshri@uh.edu
§ Collegio Carlo Alberto, University of Torino, CEPR, giovanni.mastrobuoni@carloalberto.org
1 Introduction

Many Western countries are facing increased migratory pressure be it over land or sea. For
instance, annual migratory flows from Africa to Italy alone have jumped from a few hundred
to almost 200,000 over the past quarter century, and these flows are only expected to increase
further due to high African population growth coupled with increasing desertification. This
global development has prompted a variety of reactions in destination countries: Europe’s
Border and Coast Guard agency (Frontex), often in cooperation with the EU member states,
patrols Europe’s borders to detect (and ostensibly deter) undocumented migrants, most of whom
try to cross the Mediterranean sea to reach Italy, Malta, Greece or Spain. Australia detains
sea-bound immigrants in offshore facilities located on Nauru and Manus Islands; Hungary has
erected a barrier on its border with Serbia and Croatia; the United States has raised sanctions
on migrants apprehended while attempting to enter the U.S. illegally and has built barriers
along the Mexican border.

Recently, European populist or nationalist parties in a number of countries (Hungary, Aus-
tria, Italy, Estonia, Poland, and Switzerland) have won seats in government by running primarily
on anti-immigration platforms, and the United Kingdom’s referendum on BREXIT was fueled
in part by anti-immigration appeals. This has sent shock waves through European politics and
has made immigration one of the most salient political issues of the day. In most other Eu-
ropean countries, the vote shares of similarly-oriented parties have frequently reached double
digits. According to recent polls, the Italian party “Lega”, a populist anti-immigration party,
jumped from about 10 percent to 30 percent of the vote share. The enormous gain is believed
to be due to his attempts to ban refugee boats, including NGO rescue vessels, from entering
Italian ports.

The renewed focus on immigration in Italian politics follows directly from the fact that a
major European migratory route is the “Central Route” along which irregular migrants board
vessels on the North African coast en route to Italy. In March 2015, the executive director of
Frontex told the Italian Associated Press National Agency (ANSA), “Anywhere between 500,000
to a million people are ready to leave from Libya,” and from 2009 to 2017 over 750,000 irregular
migrants and refugees reached Italy along this route. Despite its short distance, this is now

1 While most international migration occurs legally, there are over 30 million irregular migrants living in the
world today according to the most recent World Migration Report of the United Nations (slightly more than 10
percent of the total number of international migrants). Irregular migrants are defined by the UN as migrants
who either entered, remained in, or worked in a country illegally (McAuliffe and Ruhs, 2017).

2 In the next 50 years, population growth in sub-Saharan Africa is expected to be five times as large as
population growth in Latin America in the past 50 years (Hanson and McIntosh, 2016). Kniveton et al. (2012)
model how migration will be affected by the interaction between population growth (the population of sub-
Saharan Africa is expected to double in 30 years) and a changing African climate.

3 Indeed, the Mediterranean sea has been dubbed the “New Rio Grande” (Hanson and McIntosh, 2016).
Fasani and Frattini (2019) test whether Frontex deters migrants from attempting to enter Europe and find
evidence that deterrence is high for land routes but not sea routes.

4 Bazzi et al. (forthcoming) find that the increased sanctions have lowered recidivism in illegal entry, while
Peigenberg (2020) and Allen et al. (2018) find that the border wall reduced entry, though at a very high cost.

5 Malta is a secondary destination of migrants along the Central Route.

6 See “Up to one million poised to leave Libya for Italy,” ANSAmed, March 6, 2015.
agreed to be the deadliest water crossing in the world (McAuliffe and Ruhs, 2017). Between 2009 and 2017, roughly 11,500 people are believed to have perished in the Central Mediterranean, with countless others dying along the journey through the Sahara desert (UNODC, 2018). In comparison, annual deaths along the US-Mexico border range in the low hundreds.\footnote{Between 1994 and 2000, about 1,700 deaths were reported to Mexican Consulates along the US-Mexico border (Cornelius, 2001).}

The reaction to this slowly unfolding tragedy has been inconsistent at best. In the wake of large, high profile shipwrecks, Italy and the EU initiated extensive search and rescue (SAR) operations at sea in the form of operations Hermes, Mare Nostrum, Triton and Themis.\footnote{Over the European migration crisis of 2015-2016, Hatton (2020) analyses how public opinion and politics shaped European asylum policies. Battiston (2020) shows that rescue operations become more intense when media attention is high.} Despite intensifying efforts, some of the deadliest years on record followed. While these well-intentioned operations ostensibly reduced the risk of death \textit{ceteris paribus}, they may have also induced greater numbers of migrants to attempt crossing, leading to an ambiguous effect on total migrant deaths.\footnote{According to Porsig (2015), smugglers quickly learned to monitor Mare Nostrum vessels’ positions through the Marine Traffic website (http://www.marinetraffic.com/).} Moreover, to the extent that these additional crossings were made on flimsier boats in a cost-saving measure, the operations may have unintentionally increased the risk of death along the journey in practice. Although Italy and the EU reduced the geographic scope of their operations beginning in 2017, several NGOs and private actors have stepped in by sending rescue vessels to newly unpatrolled areas.

Our goal in this paper is to identify how SAR operations reshaped the market for smuggling along the Central Route. In particular, did SAR affect the numbers of crossing attempts, and did it affect the risk incurred by migrants attempting to cross? These questions are difficult to answer for three reasons. First, the details of crossings and rescues are largely unobserved to researchers. Extralegal activities are fundamentally difficult to observe for obvious reasons; journeys may vary dramatically in terms of type of craft, expected duration, and expected route; and SAR operations span a vast expanse of sea over many months-long periods, so they are likely to affect crossings heterogeneously. Second, it is challenging to ascertain the counterfactual numbers of migrant crossings and deaths that would have occurred in the absence of SAR because these are endogenously determined in a strategic equilibrium with smugglers. And third, SAR operations change infrequently and ostensibly cover the entire Central Mediterranean, so a contemporaneous counterfactual is unavailable.

In light of these obstacles, standard approaches to estimate the effect of a policy change are unsuitable. Instead, we pursue an indirect identification strategy that combines unique high-frequency data on crossing attempts by country of origin and boat type, the insights of a novel model of smuggling, and plausibly exogenous, high-frequency variation in the physical conditions of each crossing attempt.\footnote{As in a sufficient-statistic approach, we use quasi-experimental evidence to make welfare considerations based on policy simulations.} We find that more far-reaching SAR operations induced more migrants to attempt crossings in bad weather and eventually led smugglers to shift to unsafe boats. We estimate that almost all additional attempts were made on inexpensive and
unsafe inflatable boats, which are estimated to be about 20 times more dangerous than sturdy wooden boats. As a result, the safety benefits of SAR were offset, and the ex ante riskiness of passage likely increased during the most intense periods of operation.

We complement these results with more direct evidence on crossing attempts on inflatable boats. In the summer of 2017, when most SAR operations were in the hands of rescue vessels managed by Non-Governmental Organizations, the Italian government introduced some new legislations that forced these vessels out of the Libyan waters. The observed sudden reduction in crossing attempts, mostly on inflatable boats, is in line with the predictions of our model.

An increase in crossing attempts and increase in the riskiness of passage implies that SAR operations increased the total number of deaths in transit. However, we stress that our findings do not imply that SAR operations should be curtailed or eliminated. Indeed, SAR almost certainly led to an increase in total migrant welfare: while some migrants could have been worse off by SAR-induced changes in prices, migrants were made better off in aggregate since more could now afford to attempt the journey in the first place. Rather, our analysis offers some nuance for any evaluation of the costs and benefits of SAR operations, as even a well-intentioned policymaker who is faced with balancing such difficult to enumerate costs and benefits would be wise to consider behavioral responses to their decision.

Absent exogenous variation in the timing and intensity of SAR, we cannot directly identify its effects. Instead, we propose an alternative, indirect approach to identify the effects of SAR based on a simple theoretical model of smuggling that allows us to infer the effects of SAR on attempted crossings from changes in the elasticities of attempts with respect to crossing conditions. These elasticities can be identified under the weaker assumption that day-to-day variation in winds and tides are exogenous.

The intuition behind our model and empirical approach is straightforward. SAR operations plausibly increase the ex ante probability of a successful crossing ceteris paribus (where success is defined as an arrival into Italy). This increase is likely greater for migrants attempting to cross on less safe vessels, thereby distorting both the total number of crossing attempts and the ratio of crossing attempts on seaworthy versus unsafe boats. Furthermore, unsafe vessels are more vulnerable to adverse crossing conditions than more seaworthy boats, so the distortion across vessel types induced by SAR will in turn affect the elasticity of attempts to crossing conditions. Under fairly weak assumptions on crossing technologies and the demand for passage into Europe, a reduction in the elasticity of attempts with respect to adverse crossing conditions under SAR can be interpreted as evidence that SAR induced crossings. The magnitude of boat-switching from safe to unsafe boats that we estimate implies a likely decrease in the ex post probability of safe passage.

To implement our identification strategy, we rely on daily observation of activity along the Central Route. This is accomplished with the use of unique, restricted daily data on crossing attempts that we obtained from the Polizia di Stato, the Italian State Police in charge of migration. To the best of our knowledge, these data have not been used in any other analysis of migration along the Central Route, and they offer an unparalleled perspective on how migration
changes at high frequency, the ideal frequency to exploit changes in sea conditions. We use this information together with a carefully researched timing of SAR operations from 2009-2020. For the later years (2016-2020) we have information on the country of departure and exploit a sudden and large drop in the availability of NGO rescue boats that happened close to the Libyan coast (see Section 2.1).

We complement this with a robust dataset on migrant deaths that we cross-reference from four high quality sources, daily data on physical crossing conditions (wave height), data on migrant boat types, and a carefully researched catalog of SAR operations from 2009-2020.

Despite the importance of this issue, there has been little empirical analysis and formal theoretical modeling of irregular migration along this important route, as pointed out by Friebel and Guriev (2013) and Aksoy and Poutvaara (2019) explore who chooses to migrate to Europe and their motivations for doing so. The authors also consider some unintended effects of stricter border regulations on (negative) circular migration and (positive) demand for smugglers. Two other papers have modeled the smuggling of migrants: Woodland and Yoshida (2006) study the effects of tougher government policy for the detection, arrest, and deportation of illegal immigrants; and Tamura (2010) develop a model in which smugglers differ in their capacity to exploit their clients’ labor opportunity at the destination.

Our paper also builds on a long standing literature stemming from Peltzman (1975) that argues that the potential safety benefits of new technologies or policies may be offset by the behavioral responses of different agents, be they drivers (Winston et al., 2006), drug users (Doleac and Mukherjee, 2018; Evans et al., 2019), or in this case, smugglers. Indeed, Cornelius (2001) finds that the more aggressive enforcement along the US-Mexico border in the 1990s increased prices for coyotes and the number of deaths along the border, and Gathmann (2008) finds that in addition to a moderate price effect, aggressive border enforcement induces migrants to shift to more remote crossing points where the chances of a successful crossing are presumably higher. Because search is costly, it can lead to greater risk of death. This literature underscores the inescapable fact that the strategic responses of smugglers to search and rescue operations and the residual responses of potential migrants generate moral hazard that must be considered when developing enlightened policy toward such humanitarian tragedy.

The paper is organized as follows: in Section 2 we provide some background on the Central Route and SAR operations that have been implemented by individual countries, the EU, and various NGOs. We also describe the various sources of data used in our analysis. In Section 3 we present a simple model of human smuggling that highlights the incentives that shape the decisions of smugglers and potential migrants. In Section 4 we develop the empirical model.
In Section 5 we estimate the responsiveness of smugglers and migrants to crossing conditions, which we combine with our model to identify the effects of SAR on crossings and riskiness of this passage. We conclude in Section 6.

2 Background and Data

The Mediterranean Sea has been the home of trade and migration routes for millennia. Italy, with its strategic central position and proximity to African shores, has always been an important trading hub as well as a major port of entry into Europe. One major migratory route runs from Libya to the Italian island of Lampedusa, which is closer to Africa (167km or about 100 miles from Ras Kaboudja, Tunisia and 296km from Tripoli, Libya) than to the European mainland (205km to Sicily and 395km to continental Italy). Another common port of entry is Pantelleria, which is just 71km away from Kelibia, Tunisia.

In calm waters, migrant boats would typically travel at a speed of 11 to 13km/h (Heller et al., 2012), meaning that on the shortest path from Tunisia it would take about 6 hours to reach Pantelleria and about 14 hours to reach Lampedusa. When leaving from Libya the boat trip would usually take more than a day. At a speed of 12km/h, it would take 25 hours to travel from Libya to Lampedusa. This time may be dramatically shortened if migrants are rescued early and transported to Lampedusa on military or NGO vessels.

Between 1997 and 2008, the number of irregular crossings from North Africa to Italian shores was stable at around 20,000 per year until Italy and Libya signed a treaty on August 30, 2008 and crossings dropped to roughly 9,500 in 2009 and 4,500 in 2010. This established Tunisia as a major point of departure for migrants, particularly after the pro-democracy uprisings during the “Arab Spring” of 2011. In January, the Tunisian President Ben Ali was forced to flee following a month of protests. According to the 2012 Frontex Evaluation Report (Frontex, 2012) by August 2011 nearly 20,000 illegal migrants departed from Tunisia, representing about a third of all 2011 crossings (see Figure 1). Appendix Figure B.1 shows that in 2011 on the Central-Mediterranean route almost half of all migrants were Tunisians.

As result, the Italian government quickly signed a readmission agreement, which allowed a maximum of 100 Tunisians to be returned weekly. Although this curtailed crossings from Tunisia, Tripoli fell in the August of 2011, which led to a surge of Libyan refugees. Libyan dictator Muammar Ghaddafi was captured and killed in October 2011 rendering the previously signed treaty with Italy moot, and instability quickly travelled to Egypt and the Middle East, bringing with it further waves of refugees. Unsavory actors with ties to Al Qaeda quickly controlled parts of the market for human smuggling into Europe, which by then was largely organized out of Libya. By the end of 2011, almost 60,000 immigrants from North Africa had reached European shores, and Italy became the main port of disembarkation on the Central-

14 Military vessels tend to travel in excess of 30km/h and can cover the Tripoli-Lampedusa distance in less than 10 hours. For example, the Triglav 11 Slovenian patrol boat used during Mare Nostrum has a top speed of 50km/h. The two Minerva-class corvettes used in the same operation have a top speed of 33km/h. The patrol boats “Classe Costellazioni/Comandanti” reach a top speed of 46km/h. NGO vessels tend to be slower but still much faster than typical migrant boats. For example, the “Open Arms” travels at an average speed of 17km/h.
Figure 1: Crossings and Deaths Along the Central Route, 2009-2020

Note: The total number crossings to Italy are on the left axis, and the number of deaths in transit are on the right axis. Italian data on total crossings come from Polizia di Stato (State Police). The data on deaths at sea are from The Migrants File data available at https://www.themigrantsfiles.com. Most of the migrants over the Central Mediterranean route from North Africa arrive to Italy (and a smaller number in Malta). Over the same period Malta registers 24,778 total crossings.

After two relatively calm years, attempted crossings to Italy further skyrocketed with the deepening of civil war in Libya, reaching close to 150,000 in 2016. This escalation was accompanied by a sharp increase in the number of people dying along the sea route from North Africa with death rates of about 2 percent (see Figure 1).

For our analysis, we combine data from several sources that focus on irregular migration along the Central Route from 2009 to 2017. Extralegal behavior is by its very nature often difficult to observe. As such, we always rely on multiple sources for those variables that are least well documented in official statistics. In total, we construct a dataset that includes detailed information on search and rescue operations alongside daily data on irregular crossings, deaths and crossing tidal conditions each of which we describe in further detail.

2.1 Search and Rescue Operations

As irregular migration surged and became more deadly, Italy and the EU launched a number of search and rescue (SAR) operations with specific objectives. We summarize their operating dates, jurisdiction and budgets in Table 1.

15 The Libyan Army and the police often worked together to force migrants that had been living and working in Libya to leave for Italy (Frontex 2012).

16 Moreover, in response to the many casualties several Non-governmental organizations started providing aid and emergency medical relief to refugees and migrants. The first vessels of the NGO Migrant Offshore Aid Station (MOAS) started looking for migrant boats in distress close to Libyan shores towards the end of August.
Table 1: EU Operations

<table>
<thead>
<tr>
<th>EU Operations</th>
<th>Dates</th>
<th>Maritime SAR Distance from Italian shores (in km)</th>
<th>Budget per month</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermes - Main operations</td>
<td>16 Apr – 16 Oct 09</td>
<td>44</td>
<td>0.9</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>14 Jun – 29 Oct 10</td>
<td>44</td>
<td>0.8</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>20 Feb – 31 Aug 11</td>
<td>44</td>
<td>2.5</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>02 Jul – 30 Oct 12</td>
<td>44</td>
<td>1.0</td>
<td>4.1</td>
</tr>
<tr>
<td>Extension</td>
<td>01 Sep – 31 Mar 12</td>
<td>22*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>01 Nov – 31 Jan 13</td>
<td>22*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mare Nostrum</td>
<td>06 May – 07 Oct 13</td>
<td>44</td>
<td>1.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Triton I</td>
<td>18 Oct 13 – 31 Oct 14</td>
<td>244</td>
<td>9.3</td>
<td>112</td>
</tr>
<tr>
<td>Triton II</td>
<td>01 Nov 14 – 30 Apr 15</td>
<td>56</td>
<td>2.9</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td>01 May 15 – 31 Jan 18</td>
<td>256</td>
<td>18.2</td>
<td>437</td>
</tr>
<tr>
<td>Themis</td>
<td>01 Feb 18 – 31 Dec 20</td>
<td>24</td>
<td>22.3</td>
<td>721</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NGO Operations</th>
<th>Dates</th>
<th>Maritime SAR Op. Area</th>
<th>Fundraising per month</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOAS</td>
<td>25 Aug – 15 Oct 14</td>
<td>Libyan shore</td>
<td>2.1</td>
<td>4</td>
</tr>
<tr>
<td>MOAS</td>
<td>01 May – 01 Oct 15</td>
<td>Libyan shore</td>
<td>1.1</td>
<td>5.7</td>
</tr>
<tr>
<td>MOAS</td>
<td>06 Jun – 31 Dec 16</td>
<td>Libyan shore</td>
<td>0.86</td>
<td>6</td>
</tr>
<tr>
<td>MOAS</td>
<td>01 Apr – 01 Sep 17</td>
<td>Libyan shore</td>
<td>0.55</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Note: Budget numbers are in millions of Euro. Information on the extent of the SAR zone is sometimes hidden in official Frontex Operational Plans (2009-2014). Information on **Mare Nostrum** and **Triton I** are gathered from a report by Italian Parliament (2017) and Senate Statistical Office (2015). The 2016 and 2018 Frontex budgets provide details on Joint Operations [Frontex 2016][2018]. Budget during Themis Operation is retrieved from the Frontex Programming Document 2020 - 2022 [Frontex 2019]. In these instances our best guess (*) is that surveillance occurred within the territorial sea, as defined by the 1982 United Nations Convention on the Law of the Sea (12 nautical miles, or 22 km from the coastal state).

Search and rescue operations usually begin with distress calls to “Marine Rescue Coordination Centers (MRCC),” which takes immediate action to rescue the migrant boat in need. For the bulk of our sample period, migrant and civil rescue boats in the Central Mediterranean would traditionally call the Italian MRCC located in Rome even if they were closer to Tunisian or Libyan territorial waters because even though both African countries are signatories to the 1979 International Convention on Maritime Search and Rescue, neither one had officially established their SAR area [17]. This implies that no single country was responsible for the area between the territorial waters of the two African countries and the Maltese and Italian SAR areas. Moreover, the 1979 Convention dictates that rescued migrants must be taken to a “place of safety” where migrants’ fundamental rights are preserved, and neither Tunisia nor Libya established its SAR area in June of 2018.

2014. Other NGOs followed in later years (a full list is shown in Table C.1). Since MOAS was the first NGO to operate close to Libya and discloses all its operational plans, including the exact period of SAR operations, later in the paper we use these dates to proxy for NGO presence.

17 Libya established its SAR area in June of 2018.
Libya are classified as safe. As a result, migrants rescued during our period of analysis were transferred almost exclusively to Italy (overall less than 5 percent of migrants who chose the central-Mediterranean route end up on Malta).

Hermes

In the years preceding the Arab Spring, EU planes, helicopters and naval assets patrolled Italian shores from North Africa as part of Operation *Hermes*, which had a monthly budget of less than €1 million ([Frontex, 2009, 2010](#)). In response to the surge of migrants following the Arab Spring, the Joint Operation European Patrol Network (EPN) *Hermes* was launched in February 2011 and lasted until August along with a near tripling of the operational budget.

The main objectives of *Hermes* as laid out by Frontex were (i) border surveillance, (ii) early detection of crossings to inform third countries and seek cooperation (iii) information gathering on crossings, (iv) identification and return of third country nationals, and (v) prevention and fight of smuggling of migrants and trafficking of human beings. Its geographical operational area extended up to 24 nautical miles (approximately 44km) from Sicily, which corresponds to Italian territorial waters plus contiguous zones. Frontex extended the operation twice.

Mare Nostrum

Large scale sea accidents led to important changes at the end of 2013. On October 3, a fishing boat carrying migrants from Libya sank off of the Italian island of Lampedusa. The death toll after an initial search was 359 (it was later revised upward). Later in the week, a second shipwreck near Lampedusa led to an additional 34 deaths. In response to these twin tragedies, the Italian government initiated *Mare Nostrum* on October 18, 2013, the first military operation in the Central Mediterranean Sea with an explicit humanitarian aim.

The SAR force included both personnel and sea and air assets of the Navy, the Air Force, the *Carabinieri*, the State and the Financial Police, and the Coastal Guard ([Italian Parliament, 2017](#)). Once rescued, “irregular” migrants were generally channelled to the existing reception system for asylum seekers ([Bratti et al., 2020](#)).

Operationally, *Mare Nostrum* consisted of permanent patrols in the SAR zones of Libya, Malta and Italy. Patrols were supposed to extend up to 120 nautical miles from Italian territorial waters (about 244km south of Lampedusa) but often reached Libyan territorial waters and included naval and aircraft deployments carried out by military personnel. The monthly cost of this extensive operation was around €9.5 million, dwarfing that of *Hermes*. Despite seemingly broad public support, the operation was criticized as an unfair burden for Italy to bear alone. *Mare Nostrum* was also criticized by UK’s former foreign office minister, Lady Anelay, who described it as, “an unintended ‘pull factor’, encouraging more migrants to attempt the dangerous sea crossing and thereby leading to more tragic and unnecessary deaths.”

[Hatton, 2016, 2017](#) discuss the different asylum seeker policies across OECD countries and, importantly, highlight the limitations of the European asylum policy.

9
Triton

In spite of UK opposition, patrolling activities were taken over by the Frontex-led Operation Triton on November 14th 2014, which officially superseded Mare Nostrum (Frontex, 2014). The European Commission specified that the Triton mission would differ from Mare Nostrum since its primary objective was not the search and rescue of migrant boats in distress but rather surveillance of the external borders of the European Union. However, the European Parliament and the Council of the European Union clarified that the operation would not escape the obligations of international and European law, which required intervention where necessary to rescue migrants in difficulty (Regulation EU 656/2014).

Triton’s initial operational area shrunk to only 30 nautical miles (56km) from the Italian and Maltese coasts. However, after two more high profile shipwrecks in a single week in April 2015 resulted in over one thousand migrant deaths, the funding and operational power of Triton expanded dramatically. The second phase of Triton expanded the SAR area up to 138 miles (256km) south of Lampedusa and tripled its operational budget. In addition, Frontex began to destroy migrant smuggler vessels to prevent them being reused, which might have further prompted smugglers to switch from seaworthy but expensive vessels to inflatable rafts, which are an order of magnitude cheaper.\(^{19}\)

The Minniti Code and NGOs

In response to an increased presence of NGO vessels near the Libyan shore, former interior ministry Marco Minniti asked NGOs to sign a code of conduct in July 2017\(^{20}\) NGO vessels were required to: i) avoid Libyan waters unless in serious and imminent danger, ii) not interfere with the activity of the Libyan Coast Guard, iii) not communicate with migrants to facilitate the departure of boats, and iv) allow Italian police officers onboard their vessels.\(^{21}\)

Seven out nine NGOs refused to sign the code of conduct, which put their vessels at risk of confiscation. Following strong pressure from the Libyan coast guard, most of these NGOs decided to pull out of Libyan waters. The percentage of irregular migrants intercepted by Tripoli’s Government of National Accord (GNA) Coast Guard rose from 10% to 20% by the end of 2017, resulting in a growing fraction of migrants who were returned to Libya (Figure B.2). However, this alone does not explain the enormous reduction of Libyan arrivals seen in Figure 2 in the middle of the summer, when crossing conditions are ideal. The average daily number of attempted crossings from Libya dropped from around 700 to about 100. This drop was driven

\(^{19}\) On May 2015, the EU launched a military operation known as European Union Naval Force Mediterranean (EUNAVFOR Med) Operation Sophia. The main mandate was to take systematic measures to identify and stop boats used or suspected of being used by human traffickers in the Central Mediterranean. On late 2016, the Council added two additional tasks to the mission’s mandate: (i) training the Coast Guard and the Libyan Navy and (ii) contributing to the implementation of the UN arms embargo on the high seas off the coast of Libya. On December 21, 2018, the European Council extended the mandate of the operation until March 31, 2019. The Operational budget until 27 July 2016 was €11.82 million annually while for the period 28 July 2016 to 27 July 2017, the reference amount for the common costs of operation Sophia was €6.7 million.

\(^{20}\) We discuss the role of NGOs in more detail in Appendix C.

\(^{21}\) The code of conduct comprises thirteen rules and is available at http://www.interno.gov.it/sites/default/files/codice_condotta_ong.pdf.
by a reduction in crossings on inflatable boats.\footnote{Although there was some substitution between Libya and Tunisia, where the average daily crossings rose from under 10 to a maximum of around 100 in September, this does not come close to offsetting the reduction in Libyan crossings. Moreover, daily crossings dropped in Tunisia as well in the later months of 2017. It is worth noting that almost all crossings from Tunisia, which is considerably closer to Italian shores, occurred on sturdy boats.}

Figure 2: Attempted Crossings, 2016-2021

![Graph showing attempted crossings over time]

Note: The information on crossing attempts, which are the sum crossings and deaths, by different routes and types of boats are disclosed by State Police (2016-2020). Vertical dotted lines display the start of Minniti Code.

Thermis

In February 2018, operation *Triton* was replaced by Operation *Themis*, which focused on law enforcement and security, including efforts to collect intelligence to stop terrorists and foreign fighters from entering the EU. Under *Themis*, the patrol area shrank considerably to 24 miles from the Italian coast (without covering the Maltese waters). Because vessels under the EU mandate could not operate in waters beyond this mark, *Themis* mandated migrants to be brought to the closest safe harbor.

2.2 Data on Crossings

We obtained a novel database containing the numbers of daily irregular migrants to Italy from the *Polizia di Stato* (State Police) who operates under the control of the Department of Public
Security (Ministry of Interior). The Department oversees all activities related to public order, which includes operational support for SAR missions. In addition to collecting information on irregular migration, they are tasked with controlling the flow of migrants into Italy and enforcing regulations regarding the entry of and stay of migrants. We use their data to construct our measure of daily arrivals to the Italian shores, which constitutes the bulk (over 75%) of all arrivals along the Central Route.23 Beginning in 2016, we observe the country of departure and boat type for each arriving vessel. According to the 2017 Euro Asylum Seeker Survey Bank (2018), which collected information from a random sample of adult migrants in Italian asylum centers, 96 percent of migrants were crossing on boats that were intercepted by Italian or EU naval assets. This implies that the number of daily arrivals is unlikely to be measured with sizable error.

We then compute total crossings as the sum of arrivals and deaths in transit. Attempted crossings have increased over the sample period, peaking in 2016 (see Figure 1). There are on average 170 attempted crossings per day along the Central Route, and they follow a strong seasonal pattern as shown in Figure B.3. Nevertheless, there is significant variation in seasonality across the different years of our sample.

Unfortunately, we cannot observe daily attempted crossings that are intercepted by the Libyan Coast Guard (LCG), but such operations were in place only after 2016. Based on our

Figure 3: Types of Vessels Used, 2013-2020

![Figure 3](image)

Note: The information on crossing attempts, which are the sum crossings and deaths, are disclosed by the European Border and Coast Guard Agency known as Frontex (for the period from 1 January 2013 to October 2017) and by State Police (for the period November 2017 to December 2020). Vertical dotted lines display the start of SAR Operations (Hermes, Mare Nostrum, Triton I, II and Themis) and Minniti Code.

23 Most of the migrants arrive on the Lampedusa shores (22%), Augusta (20%) and Pozzallo (14%) in Sicily.
data on crossings merged with UNHCR (2017) data (see Appendix Figure B.2), the fraction of migrants rescued by the LCG is around 10 percent and starts growing only towards the end of 2017. Our results that use data up until 2017 are robust to dropping this period. Later we discuss how LCG interceptions influence the set of results that are based on country of departure-level data.

We also gathered information on the type of vessel through a Freedom of Information Act (FOIA) from Frontex for the years 2013-2017 (we were denied access to information for the years 2009 to 2013), while for the 2016-2020 period we gathered this information by country of departure directly from the Polizia di Stato. We summarize these data in Figure 3. Even though many crossing vessels in that sample period are described as unknown, it is immediate that over time, especially at the start of Triton II operations in mid-2015, inflatable boats, “other boats” and “unknown boats” become the main vessel used by smugglers. The use of inflatable boats drops again relative terms towards the second half of 2017, after the “Minniti” code and with the beginning of operation Themis.

The observed shift in vessel type coincided with a massive increase in rubber boat imports from China to Malta, Turkey, and Egypt, intermediate stops along the way to Libya. As shown in the left panel of Figure 4 net-imports of rubber boats and wooden ferries moved roughly in tandem from 2005-2012, after which they diverged. In 2014 and 2015 (towards the end of Mare Nostrum and the beginning of Triton II, two periods of increasing SAR activity) net-imports increase by a factor of 5. Another large increase happens towards the end of Triton II, in 2017, presumably before the summer. By comparison, imports of other vessels are flat. This pattern is further supported by trends in imports of life-jackets to Egypt, Libya and Malta (right panel). Indeed, a sharp increase in imports of these inexpensive safety devices, whose benefits would largely accrue to passengers on unsafe, inflatable vessels, is indirect evidence that traffickers

Figure 4: Net-Imports of Rubber Boats, Wooden Ferries and Life Jackets

Note: Data come from UN Comtrade over the period 2005-2020. The series show net-imports of rubber boats and ferries (left panel) and Life Jackets (right panel) to countries near Libya for which data are available (Malta, Turkey, and Egypt). Both series are normalized to 1 in 2010.

24 In July 2017 the EU introduced an export ban on inflatable boats and outboard motors to Libya.
offset the safety benefits of SAR.25

2.3 Data on Deaths

Although official statistics on deaths in transit are difficult to come by, a number of large transnational organizations make great efforts to document these deaths. We cross-reference these data sets to create a comprehensive single measure of daily deaths. The average number of daily deaths is 4.5, which corresponds to a crossing risk (of death) of 9 percent.

Our primary source is UNITED for Intercultural Action, the European network in support of migrants, refugees and minorities.26 To produce the *List of Deaths* dataset, UNITED collects information from field organizations, institutional sources, and the migrants’ protection systems of various European countries. This dataset contains information on where, when, and under which circumstances a migrant died, including whether it happened during an attempted border-crossing.

Although the *List of Deaths* database is considered to be the largest and most comprehensive source on deaths at sea, we augment it with information provided by the Missing Migrants

![Figure 5: Migrant Deaths by Location and Year](image-url)

25 The conjectured use of life-jackets on unsafe boats is also evidence that traffickers are constrained by the safety concerns of migrants through competition.

26 UNITED has monitored deaths at sea since 1993 with the support of more than 560 organisations and institutions from 46 European countries (including the European Commission, the Council of Europe, OSCE-ODIHR and Heinrich-Böll-Stiftung). UNITED monitors the number of deaths during border crossing attempts around the world and counts refugees, asylum seekers and undocumented migrants who have died through their attempts to enter Europe.
Project that covers the portion of our sample period in 2017. We also consider the data from Frontex that spans 2014-2016 and the Migrants File dataset that spans 2009-2016.

In Figure 5, we present a map of fatal sea accidents in the Mediterranean Sea. Larger indicators correspond to more deadly shipwrecks. Not only does the number of deaths increase over time, deaths also appear to occur closer to the Libyan shore.

2.4 Data on Crossing Conditions

We proxy for crossing conditions with significant wave height, $H^{1/3}$, a widely used measure in maritime navigation that corresponds to the average height of the largest tercile of waves in the open sea. It combines information on wind, waves and swell, all of which may cause shipwrecks. Significant wave height is commonly modeled with the Rayleigh distribution ([Battjes and Groenendijk, 2000]), which allows for straightforward calculation of average wave heights above given percentiles. This is particularly useful to us, as shipwrecks tend to be caused by only the very largest waves. For example, 1 in 10 waves have an average height of $H^{1/10} = 1.27H^{1/3}$. Given J waves, the maximum wave height can be approximated as $\sqrt{0.5 \log(J)}H^{1/3}$, which, for large J, is about twice the significant wave height $2H^{1/3}$. This means that with a significant wave height of 1.5 meters, a vessel crossing the Mediterranean sea would most likely encounter waves of up to 3 meters of height. Linearity of H (in its exponent) implies that modeling outcomes as linear functions of significant wave height $H^{1/3}$ is empirically equivalent to choosing any other specific wave height $H^{1/k}$ (with coefficients appropriately rescaled). Later we are going to see that based on the Rayleigh distribution the probability of exceeding a specific wave height within a time period is also a function of significant wave height $H^{1/3}$.

We obtained detailed data on significant wave height from the European Centre for Medium-Range Weather Forecasts (ECMWF). These data are constructed using high frequency readings from satellite measurements, surface-based data sources (buoys, radar wind, drop-sonde and ships) and aircraft reports ([Dee et al., 2011]), and they are measured at a variety of potential departure points along the North African coast: Tripoli and Zuwara, Libya; Al Huwariyah, Monastir and Djerba, Tunisia; Annaba, Algeria. Figure B.4 shows the density of the significant wave height by season.

The multiple types and sources of data that we obtain are observed over various periods;
as such, we are able to conduct our main analysis on the period from 2013 to 2020, and we present auxiliary results when possible using data from other time periods. We summarize all of our main variables over the primary sample period in Table 2. There are about 160 attempted crossings per day in the 2013-2017 period. The average for the 2016-2020 period is also close to 160, but only for Libya. The average for Tunisia is an order of magnitude smaller (this is another reason for modelling relative changes). Average wave heights are between 0.8 and 1 meter, and tend to be slightly higher in Libya. But the difference that stands out, is that notwithstanding the fact that Libya is much farther away from Italy compared to Tunisia, departures from Libya are considerably more likely to take place on inflatable boats. This is compatible with the evidence that Frontex assets and later on NGO rescue boats were concentrated in Libyan waters.

Table 2: Summary Statistics

<table>
<thead>
<tr>
<th>Sample 2013-2017: 1612 Observations</th>
<th>Mean</th>
<th>Std</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attempted Crossings</td>
<td>164.483</td>
<td>316.160</td>
<td>0</td>
<td>3051</td>
</tr>
<tr>
<td>Wave in Tripoli</td>
<td>0.787</td>
<td>0.498</td>
<td>0.108</td>
<td>4.164</td>
</tr>
<tr>
<td>Max Wave in Tripoli (t,t-1)</td>
<td>0.927</td>
<td>0.568</td>
<td>0.143</td>
<td>4.164</td>
</tr>
<tr>
<td>Wave in Zuwara</td>
<td>0.671</td>
<td>0.376</td>
<td>0.101</td>
<td>3.071</td>
</tr>
<tr>
<td>Wave in Annaba</td>
<td>0.966</td>
<td>0.727</td>
<td>0.145</td>
<td>5.580</td>
</tr>
<tr>
<td>Wave in Al Huwariyah</td>
<td>1.015</td>
<td>0.743</td>
<td>0.070</td>
<td>5.274</td>
</tr>
<tr>
<td>Wave in Monastir</td>
<td>0.865</td>
<td>0.601</td>
<td>0.073</td>
<td>4.173</td>
</tr>
<tr>
<td>Wave in Djerba</td>
<td>0.746</td>
<td>0.434</td>
<td>0.084</td>
<td>2.848</td>
</tr>
<tr>
<td>Fraction of Inflatable Boats</td>
<td>0.395</td>
<td>0.374</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fraction of Inflatable+Unknown Boats</td>
<td>0.586</td>
<td>0.422</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fraction of Inflatable+Unknown+Other Boats</td>
<td>0.656</td>
<td>0.396</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample 2016-2020: 3654 Observations (1827 by Route)</th>
<th>Mean</th>
<th>Std</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route: Lybia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attempted Crossings</td>
<td>168.547</td>
<td>511.015</td>
<td>0</td>
<td>5504</td>
</tr>
<tr>
<td>Wave Height</td>
<td>0.928</td>
<td>0.618</td>
<td>0.120</td>
<td>5.506</td>
</tr>
<tr>
<td>Fr. of Inflatable Boat</td>
<td>0.565</td>
<td>0.370</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Route: Tunisia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attempted Crossings</td>
<td>17.284</td>
<td>51.733</td>
<td>0</td>
<td>580</td>
</tr>
<tr>
<td>Wave Height</td>
<td>0.786</td>
<td>0.588</td>
<td>0.091</td>
<td>4.803</td>
</tr>
<tr>
<td>Fr. of Inflatable Boats</td>
<td>0.152</td>
<td>0.283</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The two samples are: daily observations across countries of departure from 1 January 2013 to 31 December 2017 and daily observations by country of departure (Libya and Tunisia) from 1 January 2016 to 31 December 2020. Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. The data on wave height come from the European Centre for Medium-Range Weather Forecasts (ECMWF) from daily runs at 12 UTC. The spatial resolution of the data set is approximately 79 km spacing for the surface around the geographical coordinates. The wave height from Tripoli has latitude 33 and longitude 13.5 which is roughly 16 nautical miles (30km) off the principal seaport in Tripoli and 10 nautical miles (18km) from the shortest route to the Libyan coast. The location in Zuwara (33, 12) is close by the main port. The wave height from Annaba (Algeria) has latitude 37.5 and longitude 7.5. The location in Al Huwariyah (37.25, 11.25) is 20 nautical miles (35km) from the Tunisian coast and 50 nautical miles (90km) far way from Pantelleria Island (Italy), while Monastir has latitude 36 and longitude 11.25 which is 1.5 nautical miles (2.88km) from the coast and Djerba is half mile away from the coast.
3 Model

We present a simple model of irregular migration that highlights the important incentives faced by smugglers and potential migrants to guide our empirical analysis. Because many features of this market are incompletely observed at best (e.g., prices, vessel types), the implications of our model help us to infer the incidence of search and rescue operations (SAR) on the various agents involved. For simplicity, we abstract away from any strategic interaction between migrants and smugglers and treat them as consumers and producers, respectively, in the market for crossing attempts. We start with a simple baseline in which only a single type of boat is available, and we explore how SAR affects migrants’ decisions (as noted in Section 2.2, this roughly corresponds to the pre-Mare Nostrum period). We then introduce heterogeneity in boats and obtain more nuanced predictions of smuggler and migrant behavior.

On the demand side of the market for passage across the Mediterranean, we assume a unit mass of potential migrants. Migrant _i_ has utility

\[u_i = \alpha_i \sigma^R(h) - p \]

where \(\alpha_i \) is an individual specific parameter that reflects the intensity of _i_’s desire to cross and is distributed according to the continuous density \(f \), \(\sigma^R \) is the probability of successful passage, and \(p \) is the price of passage. \(^{31}\) We make a standard monotone likelihood ratio assumption on \(f \) that can be easily expressed in terms of the hazard function \(\lambda(\cdot) \):

\[\lambda(\cdot) = \frac{f(\cdot)}{1 - F(\cdot)} \text{ is non-increasing.} \quad (A1) \]

Given that only a minority of potential migrants attempts to cross, we probably observe the behavior of individuals who are in the right tail of the distribution of \(\alpha \), which makes assumption \(^{A1}\) quite plausible.

\(\sigma^R \), which represents the probability of successful passage, is a decreasing function of crossing conditions (wave height), \(h \), and it varies if an extensive SAR is in place (\(R = 1 \)) or not (\(R = 0 \)). We make the following assumptions on \(\sigma \):

\[\sigma^1(h) > \sigma^0(h) \]

\[\frac{\partial \sigma^0(h)}{\partial h} \leq \frac{\partial \sigma^1(h)}{\partial h} < 0 \]

Assumption \(^{A2}\) states that SAR increases the likelihood of successful passage. Assumption \(^{A3}\)

\(^{31}\) Migrants pay smugglers very high prices to traverse on the Central Route. According to Bank (2018), for Sub-Saharan Africans the average cost of the entire journey is close to US$2,250 and includes the cost of reaching the African coast, which is roughly equivalent to three years of income. According to Libyan smugglers who have been interviewed by investigative reporters crossing the Mediterranean sea during this period, passage on inflatable boats costs at least $500 and higher prices ARE charged for passage on wooden boats. Mannocchi (2018). According to Italian investigators (see Breines et al., 2015), the normal price for a crossing on unsafe boats for Sub-Saharan Africans is US$700 and large, safer boats cost between US$2000 and US$2500.
states that adverse crossing conditions (higher h) reduce the likelihood of successful passage, and SAR mitigates this effect. Without loss of generality, we assume that migrant i will attempt passage if $u_i > 0$ and that smugglers are price takers (we will relax this assumption later on).32

Proposition 1. Under Assumptions A1, A2 and A3, the introduction of search and rescue operations will result in:

1. Increases in total attempted crossings.

2. Total attempted crossings becoming less elastic to crossing conditions.

All proofs may be found in the Appendix. The first part of Proposition 1 follows from Assumption A2 as the introduction of SAR reduces the α_i of the marginal migrant who attempts to cross. This result, combined with Assumptions A1 and A3 immediately yield the second part of Proposition 1.

We now generalize this model by positing that each migrant may cross either on a safe boat ($b = s$, e.g., a sturdy, wooden boat) or an unsafe boat ($b = u$, e.g., a crowded inflatable raft with an under-powered outboard motor, see Figure B.3 in the Appendix) at a price of p_b. Migrant i’s utility can now be written as

$$u_i = \alpha_i \sigma^R_u(h) - p_b$$

where the probability of successful passage and price of passage vary by boat type. We make the following common-sense assumptions on crossing technologies:

\begin{align}
\sigma^R_u(h) &< \sigma^R_s(h) \quad (A4) \\
\frac{\partial \sigma^R_u(h)}{\partial h} &\leq \frac{\partial \sigma^R_s(h)}{\partial h} < 0 \quad (A5) \\
\sigma^1_u(h) - \sigma^0_u(h) &> \sigma^1_s(h) - \sigma^0_s(h) > 0 \quad (A6)
\end{align}

Assumption A4 simply states that irrespective of weather conditions “safe” boats are more likely to complete the journey than “unsafe” boats. Assumption A5 states that unsafe boats are more susceptible to crossing conditions. Assumption A6 expands on Assumption A2 and captures the fact that SAR increases the safety of unsafe boats more than it increases the safety of safe boats.33

On the supply side, smugglers offer passage to migrants at prices p_b and at costs c_b respectively. Seats on safe boats are more costly to provide than seats on unsafe boats ($c_s > c_u$). Let M^R_s and M^R_u represent the fractions of migrants who attempt to cross on safe and unsafe boats respectively.

32 It is straightforward to incorporate dynamic considerations into the model; we opt not to in the interest of simplicity. If we interpret α_i as the surplus enjoyed by a migrant who successfully crosses (relative to one who perishes en route), and we consider the alternative condition that migrant i will attempt passage if $u_i > \delta E[u_{it+1}]$ where δ is the discount rate, then we can simplify this to $\alpha_i (\sigma^R_u(h) - \delta E(\sigma^R_u(h))) > (1 - \delta)p_b$. The remainder of the analysis follows as before with slight modifications to the formulas for u_i and π given in Lemma 1.

33 With multiple boat types available, our analysis no longer requires any assumptions on the relative impact of SAR on the elasticity of successful passage with respect to waves like Assumption A3.
We begin by noting that less motivated migrants (lower α_i) will never choose a safer boat than a more motivated migrant, which we formalize in Lemma 1.

Lemma 1. Define $\alpha = \frac{p_u}{\sigma_u}$ and $\overline{\alpha} = \frac{p_s - p_u}{\sigma_s - \sigma_u}$. Under Assumption A4, if $\alpha_i < \alpha$, then i will not cross. If $\alpha \leq \alpha_i < \overline{\alpha}$ then i will cross on an unsafe boat. Otherwise, i will cross on a safe boat.

Lemma 1 imposes an ordering on migrants’ α_i that allow us to pin down the number of attempted crossings as illustrated in Figure 6. The two thresholds, α and $\overline{\alpha}$, fully characterize the equilibrium of the market.

The model with a two types of boats is a straightforward extension of the model with a single type of boat. In a world where only safe boats are available, as characterized by Proposition 1, there is only a single threshold α' describing the marginal migrant who is indifferent between crossing on a safe boat and not attempting to cross. This threshold can be expressed as a convex combination of the two thresholds described in Lemma 1.

Lemma 2. Define $\theta = \frac{\sigma_u}{\sigma_s}$. Then

$$\alpha' = \theta \alpha + (1 - \theta)\overline{\alpha}$$

Lemma 2 has an intuitive interpretation: in an environment in which the crossing risks on safe and unsafe boats are similar ($\theta = 1$) most of the crossings that would have occurred on unsafe boats if they were available will now occur on safe boats. In an environment in which the safe boats are much safer than unsafe boats, most of the crossings that would have occurred on unsafe boats if they were available are no longer attempted. The former scenario corresponds to the early portion of our sample, when trips largely originated in Tunisia and were very short; The latter scenario corresponds to the later portion of our sample, when trips largely originated in Libya, and were much longer.

For simplicity, we first consider the case in which the market for smuggling is perfectly competitive, i.e., prices are set to marginal cost.\footnote{The extent to which different militias and criminal networks compete with each other in this market has not been definitely established. On one hand, Pastore et al. (2006) argue using judicial data that different smugglers compete in prices, but they also use marketing strategies to highlight specific characteristics of the service provided. Interviews with Frontex officers seem to confirm the view that entry costs are fairly low (Campana 2017). On the other hand, there is also evidence that smugglers cooperate among themselves when storing boats, and by steering in formation to offer mutual assistance. For local, tribal, and community interests, smuggling is sometimes perceived as a way to finance their security in times of civil unrest (Micallef 2017). This is likely to generate some local monopoly power.}

We define crossing risk ρ as the *ex ante* probability that a migrant dies along the journey, which is a weighted sum of $1 - \sigma_u$ and $1 - \sigma_s$.
Proposition 2. Under Assumptions \(A4, A6 \) and perfect competition, the introduction of search and rescue operations will result in:

1. Increases in total attempted crossings and attempted crossings on unsafe boats; decreases in attempted crossings on safe boats.

2. An ambiguous effect on crossing risk.

3. Total attempted crossings becoming more elastic to crossing conditions if \(\sigma_0^u \) is small.

The first two parts of Proposition 2 follow immediately from Lemma 1. Because prices remain at \(p_u = c_u \) and \(p_s = c_s \) irrespective of whether SAR is in place, the resulting decrease in \(\sigma_u \) and increase in \(\sigma_s - \sigma_u \) shift \(\alpha \) and \(\bar{\alpha} \) to the left and right respectively in Figure 6 (part 1). These shifts may or may not outweigh the increased safety from SAR (part 2). The third part of Proposition 2 follows from the fact that if unsafe journeys are unlikely to be successful without SAR, then its introduction provides an additional margin along which smugglers and migrants may adjust their decisions.

We now consider the polar case in which smugglers are monopolists and hence can set prices freely depending on the extent of SAR. The smuggler’s problem can thus be written as

\[
\max_{p^{R}_u, p^{R}_s} M^{R}_s \cdot (p^{R}_s - c_s) + M^{R}_u \cdot (p^{R}_u - c_u)
\]

with the understanding that the \(M^{R}_b \) are endogenously determined.

Proposition 3. Under Assumptions \(A4, A4, A6 \) for a monopolist smuggler, the introduction of search and rescue operations leads to:

1. The same results as under perfect competition as listed in Proposition 2.

2. Increases in \(p_u, p_s \) and \(p_s - p_u \) if \(\sigma_0^u \) is small.

3. An increase in smuggler’s profits.

We can express the markups that monopolists charge as follows:

\[
p^{R}_u = c_u + \frac{\sigma^{R}_u}{\lambda(\alpha)} \tag{1}
\]

\[
p^{R}_s = c_s + \left[(p^{R}_u - c_u) + \frac{\sigma^{R}_s - \sigma^{R}_u}{\lambda(\bar{\alpha})} \right] \tag{2}
\]

These expressions have intuitive interpretations. The markup on \(p^{R}_u \) is greater when unsafe boats are safer and when there are fewer price sensitive migrants on the margin. The markup on \(p^{R}_s \)

35 For expositional simplicity, we assume that are unable to adjust their prices to short run fluctuations in crossing conditions \((h)\). This could be relaxed with the introduction of additional technical assumptions on the ordering of the marginal effects of crossing conditions on successful passage with and without SAR. These can be intuitively understood as second order assumptions on \(\sigma^R_b \).
has a similar interpretation, plus it is increasing in the markup on p_u^R. This reflects a degree
of price discrimination which yields two important implications: First, monopolist smugglers
respond to SAR by raising prices (part 2), though not by so much that they deter inframarginal
migrants from attempting to cross (part 1). Second, SAR makes smugglers unambiguously
better off (part 3), as they are able to capture, at least partially, the safety benefits of the
operations. However, it is ambiguous as to whether migrants will on net be better off since
SAR may make the journey more treacherous by driving a large enough share of migrants to
now cross on unsafe boats instead of safe boats.

Perhaps surprisingly, when σ_u is small, it is more likely that SAR operations will increase
the crossing risk, and only when σ_u is large will the crossing risk decrease. The intuition for
this is conveyed in Figure 7. When $\sigma_u = 0$, all travel occurs on safe boats, hence $\rho = 1 - \sigma_s$. As
σ_u grows larger, an increasing amount of travel occurs on unsafe boats, so ρ increases. When
$\sigma_u \geq \sigma_s$, all travel occurs on unsafe boats, so $\rho = 1 - \sigma_u$. The continuity of the objective
function implies that in some range of large but not too large σ_u, ρ will be decreasing.

We can illustrate the effect of SAR and its incidence on migrants in Figure 8. The analysis
is qualitatively the same whether smugglers face competition or not. In the presence of SAR,
the migrant who is indifferent between passage on an unsafe boat and no passage at all now
has a lower α_i. Intuitively, the increased safety of the journey offsets any increase in price. All
migrants close to this threshold are made better off by search and rescue operations (indicated
in blue). In this region, migrants with greater α_i enjoy greater benefits from SAR since they
value safety more.

The migrant who is indifferent between passage on a unsafe boat and a safe boat now has a
higher α_i, since there is less of a safety premium to taking the safe boat (and it may have gotten
more expensive as well). If smugglers have any market power, then all migrants who still take
the safe boat will be made worse off by SAR since they pay a higher price but get no added
benefit. Moreover, those migrants who are just to the left of this new threshold will also be
Figure 8: Incidence of Search and Rescue Operations on Migrants

(a) Perfect Competition

\[\alpha_i \]

no boat unsafe boat safe boat

(b) Monopolist Smuggler

\[\alpha_i \]

no boat unsafe boat safe boat

Note: The blue region contains migrants who are made better off by search and rescue operations, and the red region contains migrants who are made worse off by search and rescue operations. A greater intensity of color reflects a greater (positive or negative) incidence.

worse off since they highly value safety but are now priced out of safe boats.

Finally, by placing some additional structure on \(f_\alpha \), we can approximate \(\theta \) from Lemma 2 in terms of the semi-elasticities of crossings to weather conditions and relative prices. Given information on prices, it follows that we can use estimates of these semi-elasticities to determine the effects of SAR on crossing risk (note that low values of \(\theta \) imply that SAR increases crossing risk per Figure 7). Formally, if we replace assumptions A1 with the stronger parametric assumption

\[\alpha_i \sim \text{exponential}(\cdot) \]

we obtain the following result

Proposition 4. Under assumptions A6 and A7,

\[\theta \approx \frac{\omega^R}{\omega^H} \left(\frac{p_s - p_u}{p_u} + \frac{\omega^R}{\omega^H} \right)^{-1} \]

where \(\omega^R_b = \frac{\partial \text{Total Crossings}}{\partial h} \).

Since only a small fraction of potential migrants attempt a crossing, approximating \(f_\alpha \) with a single tailed distribution is appropriate. Moreover, Assumption A7 implies a constant hazard of \(\lambda \). Hence, under this assumption, our qualitative assumptions are unlikely to vary under different market structures.

4 Empirical Models

We are going to see that propositions 2 and 3 predict exactly what is observed around the time when NGO vessels were asked to leave the Libyan waters: a sharp reduction in arrivals and in the fraction of inflatable boats.\footnote{With the caveat that search and rescue operations are likely to depend on the number of attempted crossings, we find similar correlations when comparing SAR to non-SAR periods.}
Here, our main empirical task is to determine whether crossings respond more strongly to crossing conditions (significant wave height measured in meters, $h_t = H_{1/3}$) when search and rescue operations are in place and migrants are capable of switching from sturdy to inflatable crafts. If we find this to be the case, then we can infer that SAR operations (1) induced additional crossings, and (2) shifted crossings from safe to unsafe boats. In addition, the model allows to estimate the unobserved ex-ante difference in riskiness between unsafe and safe boats.

Following the model, the daily total number of crossings c_t is a function of $\alpha_t = \frac{p_t \sigma_t}{H_{1/3}}$, where prices and risk refer to the least safe boat type available. Assuming that the αs are distributed approximately exponentially, $c_t = e^{-\lambda \frac{p_t \sigma_t}{H_{1/3}}}$, where λ is the constant hazard. Since h_t is known to follow the Rayleigh distribution, then if risk depends on the likelihood of encountering tall outlier waves, the number of arrivals will also be an exponential function of wave height $\frac{H_{1/3}}{3}$.

The identification of the ωs, the marginal effects of wave height on crossing attempts, rests on the exogeneity and stationarity of weather conditions. The need to identify the marginal effects depending on the presence of EU naval assets, distinguishing safe from unsafe boats indicates the following Poisson Quasi-ML regression for the time-series data:

$$c_t = \exp \left[h_t (\omega_0 + \omega_1 \text{SAR}_t + \omega_2 \bar{u}_{w(t)} + \omega_3 \bar{u}_{w(t)} \times \text{SAR}_t) + \mu_{w(t)} + \epsilon_t \right]$$ (3)

where crossings depend on wave height interacted with the presence of an (intense) search and rescue operation (SAR_t) per official records, and the fraction of unsafe boats, $(\bar{u}_{w(t)})$, deployed in a specific week $w(t)$. We estimate Newey-West standard errors to allow for heteroskedasticity and autocorrelation within 28-day periods. We also perform randomization inference to i) ensure the robustness of this choice, and ii) make sure that the results are not due to a spurious correlation.

Because our model predicts a shift from safe boats to unsafe boats, we include week-by-year fixed effects $\mu_{w(t)}$ that subsume all variation in $\bar{u}_{w(t)}$ in order to control for the endogeneity of boat choice, as well as the endogeneity of SAR periods. In an exponential model, these fixed effects also mitigate bias in our parameter estimates that would arise from measurement error in crossings. Although attempts and deaths are likely to be better observed when SAR is in place, our reliance on within-week variation in crossing conditions for identification of $\omega_0 - \omega_3$ eliminates this as a source of bias since SAR do not vary at this frequency. Furthermore, we should stress that only the relative size of the semi-elasticities (under SAR and in the absence

37 See the proof of Proposition 4 in Appendix A for a derivation of this result. Later we test the extent to which our results are robust to alternative specifications.

38 The Poisson specification offers two additional practical advantages. First, it is well suited to analyze discrete data without biasing estimates when a high fraction (48%) of days have no crossings. Second, our estimates are not contaminated with a size effect due to a general change in the overall number of crossings over time with the inclusion of fixed effects. Nevertheless, later we are also going to use a linear model for robustness.

39 We refer to SAR operations as intense in equation (3) because we are only able to observe boat type after January 2013. As a result, the baseline operation in regression refers to Hermes, which is the least intense SAR operation according to official operational descriptions, as well as according to average distance of rescues from Lampedusa, Sicily (see Appendix Table B.1).

40 $\bar{u}_{w(t)}$ is the unweighted fraction of inflatable, or inflatable and unknown boat type. When we weight this fraction by the number of migrants on each boat we also get very similar results.
of SAR) matters for our analysis. Because SAR assets easily withstand rough seas and are ex-ante unaware of the type of boats they will encounter, the ωs are unlikely to be differentially influenced by any measurement error.

For the post 2016 period in which we observe the country of departure ($i \in 0, 1$) of each crossing, we can enrich our specification by taking advantage of an additional comparison between departures from Tunisia ($L_{it} = 0$) and Libya ($L_{it} = 1$) as follows:

$$c_{it} = \exp \left[h_{it}(\omega_{0}^{0} + \omega_{1}^{0}SAR_{it} + \omega_{2}^{0}\bar{u}_{w(it)} + \omega_{3}^{0}\bar{u}_{w(it)} \times SAR_{it}) \right] \times \exp \left[L_{it}(h_{it}(\omega_{1}^{1} + \omega_{2}^{1}SAR_{it} + \omega_{3}^{1}\bar{u}_{w(it)} + \omega_{4}^{1}\bar{u}_{w(it)} \times SAR_{it}) + \mu_{w(it),i} + \epsilon_{it} \right]. \tag{4}$$

In the regression Equation (4), the SAR dummy is equal to one during the pre-Minniti period, so the baseline corresponds to the period in which NGOs were asked to sign and abide by the Minniti code of conduct. ω_{1}^{3} measures the marginal sensitivity to wave conditions in the pre-Minniti period when the fraction of inflatables is larger and waves are higher for Libyan departures as compared with Tunisian departures. The $\mu_{w(it),i}$ now correspond to week-year-country of departure fixed effects.

5 Results

5.1 Time-series Evidence, Years 2013-2017

Estimated coefficients of Equation 3 are presented in Table 3. Each specification corresponds to a different designation of boats as “unsafe.” In all specifications, we find that adverse crossing conditions lead to a greater shift from unsafe boats to safe boats under more intense SAR operations. A 0.10 meter increase in wave height reduces the total number of crossings by 8.9-14.6 percent; in the presence of intense SAR, there is an additional reduction of 41-65 percent. While the coefficients give rise to very large negative elasticities (6.6 times the coefficients), one has to keep in mind that small changes in significant wave have a large impact on the likelihood of encountering rogue waves, that is waves that are at least twice as high as the significant wave. Appendix Figure B.6 shows the probability of encountering maximum waves of different height within a couple of hours depending on whether the significant wave height is 0.63 meters (the pre-Mare Nostrum average significant wave height) or 0.73 meters, as well as the corresponding log difference (as in a Poisson model). The likelihood of facing waves up to 2 meters is about 50 percent larger when significant wave height increases by 10 centimeters, and is almost twice as large for maximum waves that are up to 2.7 meters tall. This implies that if we measured the elasticity of crossing with respect to the risk of facing very large waves, the elasticities would be much smaller in absolute value.

As predicted by the model, when unsafe boats are unavailable, the response to intense SAR is positive, reducing the deterrent effect of waves by about two thirds, though it is not statistically

41These calculations follow from the discussion of statistical models of rogue waves in [Kharif et al., 2008].
Table 3: Crossing Attempts

<table>
<thead>
<tr>
<th>Wave Height in Tripoli (t)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inflatable</td>
<td>Inflatable + Unknown</td>
<td>Inflatable + Unknown + Other</td>
</tr>
<tr>
<td>Crossings Attempts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Height * Post SAR + Fr. Boat</td>
<td>-6.55***</td>
<td>-5.45***</td>
<td>-4.17***</td>
</tr>
<tr>
<td></td>
<td>(1.93)</td>
<td>(1.40)</td>
<td>(1.29)</td>
</tr>
<tr>
<td>Wave Height * Fr. Boat</td>
<td>-0.89**</td>
<td>-1.43**</td>
<td>-1.46**</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.60)</td>
<td>(0.61)</td>
</tr>
<tr>
<td>Wave Height * Post SAR</td>
<td>2.13</td>
<td>1.91</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>(1.81)</td>
<td>(1.34)</td>
<td>(1.13)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,612</td>
<td>1,612</td>
<td>1,612</td>
</tr>
<tr>
<td>Pre SAR Period Statistics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mean Total Attempt</td>
<td>120.34</td>
<td>120.34</td>
<td>120.34</td>
</tr>
<tr>
<td>Mean Wave Height</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Mean Fr. Boat</td>
<td>0.07</td>
<td>0.27</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Note: The sample consists of daily observations from 7 May 2013 to 4 October 2017. SAR coefficients are estimated relative to a baseline in which Hermes operations were in place (164 days). Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. Fr. Boat is aggregated at the week of the year level. All regressions control for week-by-year fixed effects. Regressions estimated using Poisson quasi-maximum likelihood models. Standard errors are heteroscedasticity- and autocorrelation-robust using Newey-West with bandwidth equal to 28 days. * p < .10 ** p < .05 *** p < .01.

significant (except once). The coefficient on wave height interacted with the fraction of unsafe boats when more intense SAR operations are not operating is positive but is not significantly different from zero. However, we should note that during Hermes (the excluded period) only 7% of crossings were attempted on inflatable boats.

As a randomization inference exercise, we estimate 644 versions of Equation 3 under the conservative classification that only inflatable boats are unsafe. In each of these versions, we use wave height at time $t - k$ in place of wave height at time t, choosing k to be sufficiently large (28 to 336 days) so as to not affect the journey.\footnote{Using leads instead of distant lags Appendix Figure B.3 leads to similar results but forces us to truncate our sample as our wave height data are only available until the end of 2017.} The top panels of Figure 9 plot the resulting distributions of our two main parameters of interest, ω_0^ks and the ω_3^ks; the bottom panels plot the resulting distributions of the other two semi-elasticities. In line with the standard errors shown in Table 3, the estimated coefficients of ω_0^k and ω_3^ks lie in the far left tails, with p-values that are close to one percent.

5.2 Panel Data Evidence, Years 2016-2020

In the later years of our sample, we observe attempted crossings by country of origin. This allows us to compare crossings along the Libyan route, for which SAR policy changes in this period, with crossings along the Tunisian route, for which SAR policy does not change. In Table
Note: The sample consists of daily observations from 7 May 2013 to 4 October 2017. SAR coefficients are estimated relative to a baseline in which Hermes operations were in place (164 days). Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. We estimate Equation 3 644 times, using wave height at time $t - k$ instead of time t, with k ranging from 28 to 672. Fr. Boat is aggregated at the week of the year level. All regressions control for week by year fixed effects. Left panel shows the placebo for the coefficients of the wave height and right panel the triple interaction terms between Fr. Boat, post Mare Nostrum dummy and the wave height. Regressions estimated using Poisson quasi-maximum likelihood models. The solid red line indicates the estimated coefficients, while the dotted and dashed line indicate the 1% and 5% critical values (computed based on the estimated standard deviation).

4 we take into account this additional difference using a Poisson Quasi-ML model. As shown in column 1, crossings from Libya were 4.4 log points larger than crossings from Tunisia before the introduction of the code of conduct. In column 2 we estimate Equation 4 controlling for these level effects with the inclusion of week by year by country of departure fixed effects. Given that this specification leverages a sudden change in the availability of NGO rescue boats, it subsumes any smooth change in demand and supply factors of crossings (beyond those that are already captured by the many fixed effects). Yet, ω_3 is remarkably similar to the ω_3 estimated in the time-series specification (-6.97 vs. -6.55), which indicates that in the presence of any SAR (EU

43 The corresponding event study coefficients, using June 2017 (when the Minniti code was introduced) as the excluded month, are shown in Appendix Figure B.8. Although not a formal proof, this test is usually interpreted as supportive of the parallel trend assumption.
Table 4: Crossing Attempts by Country of Origin

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crossing Attempts</td>
<td>Crossing Attempts</td>
</tr>
<tr>
<td>1[route = Libya] * SAR</td>
<td>4.4113***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2017)</td>
<td></td>
</tr>
<tr>
<td>1[route = Libya]</td>
<td>0.5031***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1241)</td>
<td></td>
</tr>
<tr>
<td>Wave Height</td>
<td>-2.2953***</td>
<td>-0.7638</td>
</tr>
<tr>
<td></td>
<td>(0.3761)</td>
<td>(0.7255)</td>
</tr>
<tr>
<td>Wave Height * Fr. Inflatable Boat</td>
<td>-2.3742</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.7744)</td>
<td></td>
</tr>
<tr>
<td>Wave Height * Pre Minniti</td>
<td>-0.7638</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.7255)</td>
<td></td>
</tr>
<tr>
<td>Wave Height * Pre Minniti * Fr. Inflatable Boat</td>
<td>4.0147</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.1772)</td>
<td></td>
</tr>
<tr>
<td>1[route = Libya] * Wave Height</td>
<td>1.8074**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.7290)</td>
<td></td>
</tr>
<tr>
<td>1[route = Libya] * Wave Height * Fr. Inflatable Boat</td>
<td>2.3157</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.8668)</td>
<td></td>
</tr>
<tr>
<td>1[route = Libya] * Wave Height * Pre Minniti</td>
<td>2.8909*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.6472)</td>
<td></td>
</tr>
<tr>
<td>1[route = Libya] * Wave Height * Fr. Inflatable Boat * Pre Minniti</td>
<td>-6.9742*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.7072)</td>
<td></td>
</tr>
</tbody>
</table>

Observations: 3,402 2,952
Week-Year FE: Yes No
Week-Year-Treat FE: No Yes

Note: The sample consists of daily observations from 1 January 2016 to 31 December 2020. The SAR coefficient is equal to one before August 7, 2017. The Libyan route is the treated unit. Crossing attempts sum crossings and deaths. Significant wave height is measured in meters in Tripoli, Libya and Tunis, Tunisia. Fr. Boat is averaged at the week by year level. All regressions control for week-by-year fixed effects. Regressions estimated using Poisson quasi-maximum likelihood models. Standard errors are cluster at the week of the year level. * p < .10 ** p < .05 *** p < .01.

or NGO) taking place close to the Libyan coast, Libyan crossings in inflatable boats become highly responsive to crossing conditions. As predicted by the model, the opposite response is observed when there is no substitution from sturdy boats to inflatables.

We leverage our model to translate our parameter estimates into estimates of \(\theta \), which allows us to make inferences on the effect of SAR on crossing risk. For a given \(\frac{p_S - p_U}{p_U} \), Proposition 4 provides a method to simulate \(\theta \) as a function of these parameter estimates, since \(\omega_u = \omega_0 + \omega_1 + \omega_2 + \omega_3 \) and \(\omega_s = \omega_0 + \omega_1 \) as estimated in equation 3. We present our simulated \(\hat{\theta} \) in Figure 10.

For \(p_s \approx 3 \times p_u \), which is in line with media reports (see footnote 31), \(\hat{\theta} \) is less than 5%. Notice that this is an ex ante unobserved risk ratio, which is likely to be very different from the ex post risk ratio that one would calculate from observed crossings and deaths, which is endogenously realized in equilibrium only after migrants decisions have been made. Indeed, for any plausible price ratio, we deduce that \(\theta \) is likely to be less than 10%, i.e., inflatable boats are between 10 and 20 times less safe than all other boats.

The implications of this finding are clear. First, following Lemma 2, almost all additional crossings induced by SAR took place on unsafe boats. Second, following Figure 7, SAR oper-
Figure 10: Simulated Likelihood of a Successful Journey on Unsafe vs. Safe Boats ($\hat{\theta}$)

Note: The $\hat{\theta}$s are simulated using the semi-elasticities estimated in Column (1) of Table 3. 95% confidence intervals shown with standard errors are computed using the δ-method.

...lations likely increased crossing risk for migrants, which is consistent with the increase in raw differences in crossing risk estimated in Column 2 of Appendix Table B.1. Given the very low magnitude of $\hat{\theta}$, any bias due to remaining measurement error would need to differ highly heterogeneously by boat type to overturn our results and force us to infer that SAR decreased crossing risk.

The predictions of interest in our model relate to low-frequency boat switching in response to changing SAR conditions; to circumvent endogeneity arising from these decisions, we test these...

Table 5: Fraction of People by Boat Types

<table>
<thead>
<tr>
<th>Fraction of Migrants</th>
<th>(1) Inflatable</th>
<th>(2) Inflatable + Unknown</th>
<th>(3) Inflatable + Unknown + Other</th>
<th>(4) Fishing</th>
<th>(5) Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mare Nostrum (MN)</td>
<td>0.06 (0.05)</td>
<td>-0.07 (0.06)</td>
<td>0.10 (0.08)</td>
<td>0.05 (0.07)</td>
<td>-0.15***</td>
</tr>
<tr>
<td>Triton I</td>
<td>0.30***</td>
<td>0.14 (0.09)</td>
<td>0.32***</td>
<td>0.04 (0.07)</td>
<td>-0.35***</td>
</tr>
<tr>
<td>Triton II</td>
<td>0.61***</td>
<td>0.55***</td>
<td>0.53***</td>
<td>-0.16***</td>
<td>-0.37***</td>
</tr>
<tr>
<td>Constant</td>
<td>0.11***</td>
<td>0.39***</td>
<td>0.41***</td>
<td>0.20***</td>
<td>0.39***</td>
</tr>
</tbody>
</table>

Note: The sample consists of daily observations from 7 May 2013 to 4 October 2017. SAR coefficients are estimated relative to a baseline in which Hermes operations were in place. All regressions control for 52 weeks of the year fixed effects. The 768 observations correspond to days with at least one crossing during SAR periods. Regressions estimated using OLS. Cluster standard errors at the weekly level. * p<.10 ** p<.05 *** p<.01.
predictions empirically by leveraging high-frequency boat switching in response to changing to crossing conditions, as the ω semi-elasticities are identified using week-by-year fixed effects.

Nevertheless, we can test directly whether low-frequency boat switching does occur in Table 5. Although our data is limited to SAR periods (since this is when boat type is potentially observable) and, as mentioned, is incomplete (the type of boat is recorded as “unknown” or “other” on 27% and 4% fraction of crossings) there is a clear and systematic pattern: the market for smuggling looks very different during periods of intensive SAR operations, which are characterized by increasing use of inflatable craft and decreasing use of sturdier motor and fishing boats.

In Figure 11 we exploit the second set of data, and the sharp changes in attempted crossings around the time the “Minniti Code” became operational and NGO rescue vessels were required to leave the Libyan waters (Figure 2). The fraction of attempted crossing that take place on inflatable boats drops from about 80 percent pre “Minniti Code” (0 corresponds to the period August 7 to 16) to about 40 percent post (circles are proportional to the number of attempted crossings). In both sample periods the observed boat switching is consistent with Propositions 2 and 3.

We perform a number of robustness checks to ensure the validity of our findings and summarize them here. Detailed results are presented in the Appendix. In Appendix Table B.3 we show that OLS estimation of equation 3 yeilds similar results to Poisson Quasi-ML regression. In Appendix Table B.4 we reestimate our main regression and cluster standard errors at different levels in order to ensure that our results are not simply artifacts of serial or spatial autocorrelation. In Appendix Table B.5 we replicate our analysis by incorporating information on crossing conditions from earlier days to allow for the fact that journeys may exceed one day.

Figure 11: Fraction of Inflatable Boats around the “Minniti Code”

Note: The Figure is centered around the period August 7 to 16, and circles are proportional to the number of attempted crossings.
In Appendix Table B.6, we present results specifying significant wave height quadratically (as in the Appendix Equation 20), and our findings are substantively unchanged. Finally, in Appendix Table B.7, we measure crossing conditions as significant wave height from five different locations, one of which is in Libya, three of which are in Tunisia and one from Algeria.

6 Conclusion

Irregular migration is a large and growing concern for rich and poor countries alike. In the Central Mediterranean, the large humanitarian toll of irregular migration is borne directly by migrants from the Middle East and Sub-Saharan Africa, but also indirectly by European countries who conduct costly search and rescue operations and whose internal politics have been riven by this issue.

After analyzing more than a decade of data on daily crossings, we find that while search and rescue operations have no doubt saved lives directly, they may have had adverse unintended consequences that must be considered. First, by reducing the risk of crossing, they seem to have induced more migrants to attempt to cross, and in doing so, exposed more people to the risk of death along the passage. Second, by reducing the costs to traffickers of using unsafe boats, they induced a large substitution away from seaworthy wooden vessels and towards flimsy, inflatable boats. Thus, the benefits of search and rescue operations have been, to some extent, captured by human smugglers.44

Well-intentioned policymakers who are motivated to take action face a genuine dilemma. By failing to act, it is likely crossings would continue and deaths would continue to mount. But by intervening along the route, it is likely that more migrants would attempt an extremely dangerous undertaking. Saving a migrant at sea seems to be an obvious decision; weighing that action against the many potential migrants who might be encouraged to undertake such a treacherous passage in the future complicates this immensely. The obvious parallel to well-known “trolley problems” suggests that this is an ethical dilemma with no unambiguous solution. Although our work, unfortunately, does not guide this decision definitively, it does provide clear evidence that migration and smuggling are strategic choices that are made by thoughtful agents in a fraught environment.45

In the interest of being constructive, our analysis suggests that a major policy goal of SAR operations should be to limit substitution from seaworthy boats to inflatable ones.46 One way to do so would be by interceding in the trade of such items to Libya. The EU’s ban on inflatable craft exports to Libya is a step in the right direction, though most crafts are produced in China, and Figure suggests that they may still enter Libya through Egypt and Turkey. That said, there are clear and systematic, albeit indirect, effects of intense SAR operations on these

44 Our results are consistent with Fasani and Frattini (2019)’s finding that increased EU border enforcement over land deters migrant crossings, while over sea it does not.

45 European policy makers would also have to consider the conditions that migrants face in Libya while attempting to cross the sea.

46 This is in line with Spain’s decision to ban underpowered (less than 150kwh) inflatable boats that are longer than 8 meters.
smuggling markets. Ensuring that future SAR policies inadvertently promote activity in these markets as little as possible is thus critical to their success.

Ultimately, addressing this issue will require interventions that reduce demand for irregular migration. There are two clear margins on which policymakers could act. First, the EU could reduce demand for immigration out of migrants home countries. This would require not only encouraging economic activity in these countries, but also improving their security and political environments. Second the EU could facilitate safe, legal migration from home countries to the EU so such a vital activity would be taken away from the hands of smugglers and into a rules-based order. Indeed, in all regions where irregular migration has emerged as a burning issue, such as Southeastern Europe, Turkey and the Middle East, and the US-Mexico border, politicians and policymakers would be well advised to heed these lessons. In light of these crises, it is concerning that avoiding the policies necessary for its mitigation is so politically expedient.
References

Appendix A: Proofs

Proof. Proposition 1. Note that migrant \(i \) will cross if \(\alpha_i > \frac{p}{\sigma^i(h)} \).

1. By Assumption A2, \(\frac{p}{\sigma^i(h)} < \frac{p}{\sigma^1(h)} \), so the marginal migrant under SAR has lower \(\alpha \) than in the absence of SAR. The claim follows.

2. By Assumption A3, the \(\alpha_i \) of the marginal migrant decreases less under SAR than in the absence of SAR, and under Assumption A1 the number of marginal migrants decreases more under SAR than in the absence of SAR. The claim follows.

Proof. Lemma 1. Consider two migrants \(i \) and \(j \), and assume \(i < j \). We first establish an ordering on crossing decisions. Specifically, we seek to prove:

1. If \(j \) does not cross then \(i \) does not cross.

2. If \(j \) takes an unsafe boat then \(i \) will not take a safe boat.

For (1), suppose \(j \) does not cross. Then \(\alpha_j \sigma_b - p_b < 0 \) for all \(b \). This implies \(\alpha_i \sigma_b - p_b < 0 \) for all \(b \), hence \(i \) does not cross.

For (2), suppose \(j \) takes an unsafe boat. Then a rearrangement of equation (3) implies that \(\alpha_j < \frac{p_u - p_s}{\sigma_s - \sigma_u} \). Now suppose \(i \) took a safe boat. Then \(\alpha_i > \frac{p_u - p_s}{\sigma_s - \sigma_u} \). But \(\alpha_j > \alpha_i \), so this contradicts Assumption A4.

The remainder of the lemma follows from a rearrangement of equation (3).

Proof. Proposition 2.

1. By A6, \(\frac{p_u}{\sigma_u} < \frac{p_u}{\sigma_u} \), so Lemma 1 implies that total attempted crossings will increase under SAR. Also by A6, \(\frac{p_u}{\sigma_s} > \frac{p_u}{\sigma_s} \), so Lemma 1 implies that attempted crossings on safe boats will decrease under SAR. It follows that attempted crossings on unsafe boats will increase under SAR.

2. From the first part of the proposition, SAR will lead to a greater fraction of crossings to be attempted on unsafe boats. If this is offset by the safety benefits of SAR (\(\sigma_u^1 - \sigma_u^0 \) and \(\sigma_s^1 - \sigma_s^0 \) scaled according to \(M_s \) and \(M_u \) which are determined by \(F \)) then \(\rho \) will decrease. If not, then \(\rho \) will increase. Hence the ambiguity.

3. From Lemma 1, total attempted crossings is given by \(M_s + M_u = 1 - F \left(\frac{p_u}{\sigma} \right) \) for any \(R \). We wish to prove that the derivative of total crossings with respect to \(h \) is lower under SAR. This is equivalent to showing

\[
f \left(\frac{p_u}{\sigma_u^1} \right) \frac{p_u}{\sigma_u^1} \frac{\partial \sigma_u^1}{\partial h} < f \left(\frac{p_u}{\sigma_u^0} \right) \frac{p_u}{\sigma_u^0} \frac{\partial \sigma_u^0}{\partial h}
\]

(5)
We need to specify \(\frac{\partial \sigma^R}{\partial h} \). Given that significant wave height follows a Rayleigh distribution, a boat that can safely resist waves up to height \(H \) will cross safely when meeting \(t \) waves with crossing conditions equal to \(h \) with probability \(\sigma_u = \left(1 - e^{-\frac{2h^2}{\pi^2}}\right)^t \). Using the approximation that \(\log(1 - \sigma) = -\sigma \) for the \(ex \ ante \) \(\sigma \) sufficiently small, the inequality in Eq. 5 simplifies to

\[
f \left(\frac{p_u}{\sigma_u^a} \right) \frac{1}{\sigma_u^a} > f \left(\frac{p_u}{\sigma_u^a} \right) \frac{1}{\sigma_u^a},
\]

(6)

If we can demonstrate that \(\alpha f(\alpha) \) is decreasing at \(\alpha = \alpha_0 \), then we establish inequality (6). In other words, we wish to show that \(f(\alpha) \) decreases at least as fast as \(\frac{1}{\alpha} \). Note that Assumption A1 states that \(f(\alpha) \) decreases at least as fast as \(1 - F(\alpha) \). Hence it suffices to show that \(\alpha (1 - F(\alpha)) \to 0 \) as \(\alpha \to \infty \). Note that \(\alpha (1 - F(\alpha)) = \alpha - \alpha F(\alpha) \) and \(\alpha F(\alpha) \to \alpha \) as \(\alpha \to \infty \) since \(F \) is a CDF.

Hence, for sufficiently small \(\sigma_0^u \), inequality (6) will hold. For example, if \(\alpha \) is exponentially distributed, it is easy to show that condition (6) is already satisfied for \(\alpha \) larger than the mean of \(\alpha \).

\(\square \)

Proof. Proposition 3

1. For a given \(R \), the first order conditions from the smuggler’s objective (equation (3)) are given by:

\[
\frac{\partial M^R_s}{\partial p^R_s} (p^R_s - c_s) + M^R_s + \frac{\partial M^R_u}{\partial p^R_u} (p^R_u - c_u) = 0 \quad (7)
\]

\[
\frac{\partial M^R_s}{\partial p^R_u} (p^R_s - c_s) + \frac{\partial M^R_u}{\partial p^R_u} (p^R_u - c_u) + M^R_u = 0 \quad (8)
\]

Note that prices and crossings are now allowed to vary by \(R \). Adding equations (7) and (8) together, we obtain

\[
\left(\frac{\partial M^R_s}{\partial p^R_s} + \frac{\partial M^R_s}{\partial p^R_u} \right) (p^R_s - c_s) + \left(\frac{\partial M^R_u}{\partial p^R_s} + \frac{\partial M^R_u}{\partial p^R_u} \right) (p^R_u - c_u) + M^R_s + M^R_u = 0 \quad (9)
\]

Lemma 1 implies that \(\frac{\partial M^R_s}{\partial p^R_s} + \frac{\partial M^R_u}{\partial p^R_u} = 0 \) (see the threshold between unsafe and safe passage in Figure 6) and \(\frac{\partial M^R_s}{\partial p^R_u} + \frac{\partial M^R_u}{\partial p^R_u} = -\frac{1}{\sigma^u} f \left(\frac{p^R_u}{\sigma^u} \right) \) (see the threshold between unsafe and no passage in Figure 6). Given that \(M^R_s + M^R_u = 1 - F \left(\frac{p^R_u}{\sigma^u} \right) \) by Lemma 1 and defining the hazard rate \(\lambda(\cdot) = f(\cdot)/(1 - F(\cdot)) \), it follows that
\[p_u^R = c_u + M_s^R + M_u^R \]
\[= c_u + \frac{\sigma_u^R}{\lambda \left(\frac{p_u^R}{\sigma_u^R} \right)} \]
(10)

The second term in equation (10) is simply the monopolist’s markup for unsafe boat passengers. Following Lemma 1, in order to show that crossings increase under SAR, it suffices to show that \(\frac{p_u^1}{\sigma_u^1} < \frac{p_u^0}{\sigma_u^0} \). Following equation (10), we can write

\[\frac{p_u^1}{\sigma_u^1} - \frac{p_u^0}{\sigma_u^0} = \left[\frac{1}{1 - \frac{p_u^1}{\sigma_u^1}} - \frac{1}{1 - \frac{p_u^0}{\sigma_u^0}} \right] + \left[c_u \left(\frac{1}{\sigma_u^1} - \frac{1}{\sigma_u^0} \right) \right] \]
(11)

A1 implies that the first term of equation (11) is negative, and A6 implies that the second term of equation (11) is negative, hence the total number of crossings increases.

Now, substituting from equation (7), we obtain

\[M_s^1 - M_s^0 = \frac{\partial M_s^1}{\partial p_s^1} (p_s^1 - cC) + \frac{\partial M_u^1}{\partial p_u^1} (p_u^1 - c_u) - \left[\frac{\partial M_s^0}{\partial p_s^0} (p_s^0 - cC) + \frac{\partial M_u^0}{\partial p_u^0} (p_u^0 - c_u) \right] \]
(12)

Assuming \(p_s^1 > p_s^0 \) and \(p_u^1 > p_u^0 \) (which we will establish independently later on in this proof), A1 implies that the right hand side of equation (12) is less than zero, hence the total number of crossings on safe boats decreases with SAR.

If SAR causes the total number of crossings to increase and the total number of crossings on safe boats to decrease, then it must be the case that SAR causes the total number of crossings on unsafe boats to increase.

The ambiguity of the effect of SAR on \(\rho \) follows the exact same logic as in the case of perfect competition.

The effect of SAR on the elasticity of total crossings to crossing conditions also follows the same logic as in the case of perfect competition. This is because prices are not allowed to respond to short-run changes in \(h \).

2. Substituting from equation (10), we have

\[p_u^1 - p_u^0 = \frac{M_s^1 + M_u^1}{1 - \frac{p_u^1}{\sigma_u^1}} - \frac{M_s^0 + M_u^0}{1 - \frac{p_u^0}{\sigma_u^0}} = \frac{\sigma_u^1}{\lambda \left(\frac{p_u^1}{\sigma_u^1} \right)} - \frac{\sigma_u^0}{\lambda \left(\frac{p_u^0}{\sigma_u^0} \right)} \]
(13)

This combined with A1 implies that the right hand side of equation (13) is greater than zero, so \(p_u \) increases under SAR.
Rearranging equation (7) yields

\[M^R_s = - \left[\frac{\partial M^R}{\partial p^R_s} (p^R_u - c_u) + \frac{\partial M^R}{\partial p^R_s} (p^R_s - c_s) \right] \]

(14)

Substituting for \(\frac{\partial M^R}{\partial p^R_s} \) and \(\frac{\partial M^R}{\partial p^R_u} \) as calculated from Lemma 1, we can use equation (14) to express \(p^R_s \) as

\[p^R_s = c_s + \left(p^R_u - c_u \right) + \frac{\sigma^R_s - \sigma^R_u}{\lambda \left(\frac{p^R_s - p^R_u}{\sigma^R_s - \sigma^R_u} \right)} \]

(15)

from which the markup on \(p^R_s \) is given in the second term. Using equation (15), we can write

\[p^1_s - p^0_s = (p^1_u - p^0_u) + \left(\frac{\sigma^1_s - \sigma^1_u}{\lambda \left(\frac{p^1_s - p^1_u}{\sigma^1_s - \sigma^1_u} \right)} \right) \]

(16)

\(p_u \) was shown to increase under SAR, so the first term of equation (16) is greater than zero. Similarly, total safe crossings were shown to decrease under SAR, so A6 and A1 together imply that the second term of (16) is greater than zero, hence \(p_s \) increases under SAR. Finally, if we move the first term on the right hand side of equation (16) to the left hand side, the same logic implies that \(p_s - p_u \) increases under SAR.

3. This result follows immediately from the results of part 1 of this Proposition and the envelope theorem.

\[\Box \]

Proof. Lemma 2 From Lemma 1 \(\alpha = \frac{p_u}{\sigma_u} \) and \(\bar{\alpha} = \frac{p_s - p_u}{\sigma_s - \sigma_u} \). The same logic implies that \(\alpha' = \frac{p_s}{\sigma_s} \). It follows that

\[\alpha' = (\bar{\alpha} (\sigma_s - \sigma_u) + p_u) \frac{1}{\sigma_s} \]

(17)

\[= \frac{\sigma_s - \sigma_u}{\sigma_s} \bar{\alpha} + \frac{\sigma_u p_u}{\sigma_s \sigma_u} \]

(18)

\[= \theta \bar{\alpha} + (1 - \theta) \bar{\alpha} \]

(19)

\[\Box \]

Proof. Proposition 4

Under the assumption that significant wave height follows a Rayleigh distribution, a boat of type \(b \) that can safely resist \(t \) waves up to height \(H \) will cross safely on a day with crossing
conditions equal to \(h \) with probability \(\sigma_b = \left(1 - e^{-\frac{2H^2}{h^2}}\right)^t \). Using the approximation that \(\log(1 - \sigma) = -\sigma \) for \(\sigma \) sufficiently small, then under a given SAR, we obtain

\[
\sigma_b^{SAR} \approx \left(\frac{2H^2}{h^2}\right)^t \approx \frac{1}{\gamma_b^{SAR} + \delta_b^{SAR}h},
\]

where the second line follows from a linear approximation with fixed \(t \) to match our empirical specification.\footnote{Appendix Table B.6 shows that using the quadratic function to avoid such approximation gives similar results.}

Combining Assumption A7 and Lemma 1, we can write the total number of crossing attempts under a given SAR operation as

\[
A^{SAR} = e^{-\frac{\lambda p_u}{\sigma_u^{SAR}}}
\]

Noting that \(\theta = \frac{p_u}{\sigma_u} \) and \(\overline{\alpha} = \frac{p_s - p_u}{\sigma_s - \sigma_u} \), equation (21) implies that

\[
\overline{\alpha} = \frac{\theta (p_s - p_u)}{1 - \theta} \left(\gamma_u^{SAR} + \delta_u^{SAR}h\right)
\]

Defining \(\omega_u = \omega_0 + \omega_1 + \omega_2 + \omega_2 \) and \(\omega_s = \omega_0 + \omega_1 \) to be the semi-elasticities for safe and unsafe boats estimated in equation (3), it implies that

\[
\omega_s = -\lambda \frac{\theta (p_s - p_u)}{1 - \theta} \delta_u^{SAR} \\
\omega_u = -\lambda p_u \delta_u^{SAR}
\]

Taking the ratio, we get that

\[
\frac{\omega_s}{\omega_u} = \frac{\theta}{1 - \theta} \frac{p_s - p_u}{p_u},
\]

which completes the proof.
Table B.1: Irregular Migration During Search and Rescue Operations

<table>
<thead>
<tr>
<th></th>
<th>(1) Crossing Attempts</th>
<th>(2) Crossing Risk</th>
<th>(3) Tripoli</th>
<th>(4) Bengazi</th>
<th>(5) Al Huwariyah</th>
<th>(6) Min (Tripoli, Bengazi & Al Huwariyah)</th>
<th>(7) Lampedusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermes 2011</td>
<td>2.21***</td>
<td>0.00</td>
<td>-34.20</td>
<td>-49.70**</td>
<td>38.01</td>
<td>-5.16</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.03)</td>
<td>(28.78)</td>
<td>(21.43)</td>
<td>(27.20)</td>
<td>(20.71)</td>
<td>(25.13)</td>
</tr>
<tr>
<td>Hermes 2011a</td>
<td>-0.26</td>
<td>0.03</td>
<td>-32.63</td>
<td>-120.59**</td>
<td>120.10**</td>
<td>37.41</td>
<td>66.97</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.03)</td>
<td>(32.88)</td>
<td>(47.01)</td>
<td>(58.85)</td>
<td>(26.82)</td>
<td>(53.77)</td>
</tr>
<tr>
<td>Hermes 2012</td>
<td>0.23</td>
<td>0.03</td>
<td>-22.27</td>
<td>-7.75</td>
<td>-1.34</td>
<td>5.57</td>
<td>-32.66</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.02)</td>
<td>(50.06)</td>
<td>(42.10)</td>
<td>(56.00)</td>
<td>(27.39)</td>
<td>(52.36)</td>
</tr>
<tr>
<td>Hermes 2013</td>
<td>1.70***</td>
<td>0.00</td>
<td>47.34</td>
<td>-81.76*</td>
<td>26.28</td>
<td>95.94***</td>
<td>-17.80</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.02)</td>
<td>(38.77)</td>
<td>(36.19)</td>
<td>(34.14)</td>
<td>(21.38)</td>
<td>(31.53)</td>
</tr>
<tr>
<td>Hermes 2013a</td>
<td>0.49</td>
<td>0.06</td>
<td>-47.91*</td>
<td>-20.13</td>
<td>44.60</td>
<td>-19.75</td>
<td>16.76</td>
</tr>
<tr>
<td></td>
<td>(0.50)</td>
<td>(0.06)</td>
<td>(26.48)</td>
<td>(28.60)</td>
<td>(29.93)</td>
<td>(18.82)</td>
<td>(26.47)</td>
</tr>
<tr>
<td>Mare Nostrum</td>
<td>2.55***</td>
<td>0.07***</td>
<td>-107.55***</td>
<td>-106.31***</td>
<td>123.27***</td>
<td>-29.17</td>
<td>66.64***</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(0.03)</td>
<td>(33.61)</td>
<td>(22.86)</td>
<td>(28.03)</td>
<td>(25.08)</td>
<td>(21.06)</td>
</tr>
<tr>
<td>Triton I</td>
<td>2.42***</td>
<td>0.08**</td>
<td>-180.60***</td>
<td>-102.92***</td>
<td>160.90***</td>
<td>-63.95***</td>
<td>83.76***</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.03)</td>
<td>(26.52)</td>
<td>(25.92)</td>
<td>(25.70)</td>
<td>(17.96)</td>
<td>(16.50)</td>
</tr>
<tr>
<td>Triton II</td>
<td>2.56***</td>
<td>0.10***</td>
<td>-171.17***</td>
<td>-101.38***</td>
<td>167.25***</td>
<td>-77.34***</td>
<td>106.63***</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(0.02)</td>
<td>(25.27)</td>
<td>(18.77)</td>
<td>(23.67)</td>
<td>(15.82)</td>
<td>(17.14)</td>
</tr>
</tbody>
</table>

Note: The sample in column (1) consists of daily observations from 1 January 2009 to 31 December 2017 (3,287). The sample in column (2) consists of daily observations from 1 January 2009 to 31 December 2017 (1,579), i.e. when deaths and total attempts are simultaneously different from zero. The sample in column (3)-(7) consists of 503 geo-localized rescue events from 18 January 2009 to 22 December 2017. SAR coefficients are estimated relative to a baseline in which no SAR operations were in place. Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. Crossing Risk is defined as the number of deaths per total attempts. Distances are measured for crossing with casualties. All regressions control for 52 weeks of the year fixed effects. Regressions estimated with OLS. Standard errors clustered by month times year * p<.10 ** p<.05 *** p<.01.
Table B.2: Wave and Swell Explanations

<table>
<thead>
<tr>
<th>Wave</th>
<th>Description</th>
<th>Height (metres)</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calm (rippled)</td>
<td>0.00 - 0.10</td>
<td></td>
<td>No waves breaking</td>
</tr>
<tr>
<td>Smooth</td>
<td>0.10 - 0.50</td>
<td></td>
<td>Slight waves breaking</td>
</tr>
<tr>
<td>Slight</td>
<td>0.50 - 1.25</td>
<td></td>
<td>Waves rock buoys and small craft</td>
</tr>
<tr>
<td>Moderate</td>
<td>1.25 - 2.50</td>
<td></td>
<td>Sea becoming furrowed</td>
</tr>
<tr>
<td>Rough</td>
<td>2.50 - 4.00</td>
<td></td>
<td>Sea deeply furrowed</td>
</tr>
<tr>
<td>Very rough</td>
<td>4.00 - 6.00</td>
<td></td>
<td>Sea much disturbed with rollers</td>
</tr>
<tr>
<td>High</td>
<td>6.00 - 9.00</td>
<td></td>
<td>Sea disturbed with damage to foreshore</td>
</tr>
<tr>
<td>Very high</td>
<td>9.00 - 14.00</td>
<td></td>
<td>Towering seas</td>
</tr>
<tr>
<td>Phenomenal</td>
<td>>14</td>
<td></td>
<td>Precipitous seas (only in cyclones)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Swell Description</th>
<th>Wave Length (metres)</th>
<th>Wave Height (metres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low swell of short or average length</td>
<td>0 - 200</td>
<td>0 - 2</td>
</tr>
<tr>
<td>Long, low swell</td>
<td>over 200</td>
<td>0 - 2</td>
</tr>
<tr>
<td>Short swell of moderate height</td>
<td>0 - 100</td>
<td>2 - 4</td>
</tr>
<tr>
<td>Average swell of moderate height</td>
<td>100 - 200</td>
<td>2 - 4</td>
</tr>
<tr>
<td>Long swell of moderate height</td>
<td>over 200</td>
<td>2 - 4</td>
</tr>
<tr>
<td>Short heavy swell</td>
<td>0 - 100</td>
<td>over 4</td>
</tr>
<tr>
<td>Average length heavy swell</td>
<td>100 - 200</td>
<td>over 4</td>
</tr>
<tr>
<td>Long heavy swell</td>
<td>over 200</td>
<td>over 4</td>
</tr>
</tbody>
</table>

Table B.3: Crossing Attempts: Robustness using OLS

<table>
<thead>
<tr>
<th>Crossing Attempts</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave Height in Tripoli (t)</td>
<td>Inflatable</td>
<td>Inflatable + Unknown</td>
<td>Inflatable + Unknown + Other</td>
</tr>
<tr>
<td>Wave Height * Post SAR * Fr. Boat</td>
<td>-257.33</td>
<td>-305.54***</td>
<td>-273.08***</td>
</tr>
<tr>
<td>Wave Height</td>
<td>(252.35)</td>
<td>(96.35)</td>
<td>(83.64)</td>
</tr>
<tr>
<td>Wave Height * Fr. Boat</td>
<td>-164.75***</td>
<td>-104.78***</td>
<td>-111.96***</td>
</tr>
<tr>
<td>Wave Height</td>
<td>(39.14)</td>
<td>(40.08)</td>
<td>(41.06)</td>
</tr>
<tr>
<td>Wave Height * Post SAR</td>
<td>74.52</td>
<td>94.50</td>
<td>93.44</td>
</tr>
<tr>
<td>Wave Height</td>
<td>(245.66)</td>
<td>(83.68)</td>
<td>(74.22)</td>
</tr>
<tr>
<td>Average Total Attempt</td>
<td>-15.94</td>
<td>62.10</td>
<td>70.49</td>
</tr>
<tr>
<td>Average Wave Height</td>
<td>(45.38)</td>
<td>(44.34)</td>
<td>(44.83)</td>
</tr>
<tr>
<td>Mean Fr. Boat</td>
<td>1,612</td>
<td>1,612</td>
<td>1,612</td>
</tr>
<tr>
<td>Observations</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: The sample consists of daily observations from 7 May 2013 to 4 October 2017. SAR coefficients are estimated relative to a baseline in which Hermes operations were in place (164 days). Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. All regressions control for week by year fixed effects. Regressions estimated using OLS. Standard errors are heteroscedasticity- and autocorrelation-robust using Newey-West with bandwidth equal to 28 days. * p<.10 ** p<.05 *** p<.01.
Table B.4: Crossing Attempts: Robustness on Cluster Standard Errors

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crossing Attempts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wave Height in Tripoli (t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflatable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Height * Post SAR * Fr. Boat</td>
<td>-6.55***</td>
<td>-5.45***</td>
<td>-4.17***</td>
</tr>
<tr>
<td></td>
<td>(1.63)</td>
<td>(1.31)</td>
<td>(1.37)</td>
</tr>
<tr>
<td></td>
<td>[2.97]</td>
<td>[1.74]</td>
<td>[1.56]</td>
</tr>
<tr>
<td></td>
<td>[1.95]</td>
<td>[1.42]</td>
<td>[1.31]</td>
</tr>
<tr>
<td></td>
<td>[2.13]</td>
<td>[1.58]</td>
<td>[1.43]</td>
</tr>
<tr>
<td>Inflatable + Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Height</td>
<td>-0.89**</td>
<td>-1.43**</td>
<td>-1.46**</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.61)</td>
<td>(0.69)</td>
</tr>
<tr>
<td></td>
<td>[0.41]</td>
<td>[0.78]</td>
<td>[0.78]</td>
</tr>
<tr>
<td></td>
<td>[0.39]</td>
<td>[0.65]</td>
<td>[0.66]</td>
</tr>
<tr>
<td></td>
<td>[0.39]</td>
<td>[0.73]</td>
<td>[0.74]</td>
</tr>
<tr>
<td>Inflatable + Unknown + Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Height * Fr. Boat</td>
<td>2.13</td>
<td>1.91</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>(1.47)</td>
<td>(1.25)</td>
<td>(1.20)</td>
</tr>
<tr>
<td></td>
<td>[2.89]</td>
<td>[1.69]</td>
<td>[1.35]</td>
</tr>
<tr>
<td></td>
<td>[1.85]</td>
<td>[1.37]</td>
<td>[1.17]</td>
</tr>
<tr>
<td></td>
<td>[2.04]</td>
<td>[1.54]</td>
<td>[1.29]</td>
</tr>
<tr>
<td>Wave Height * Post SAR</td>
<td>0.21</td>
<td>1.16*</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(0.65)</td>
<td>(0.78)</td>
</tr>
<tr>
<td></td>
<td>[0.49]</td>
<td>[0.82]</td>
<td>[0.89]</td>
</tr>
<tr>
<td></td>
<td>[0.46]</td>
<td>[0.68]</td>
<td>[0.77]</td>
</tr>
<tr>
<td></td>
<td>[0.46]</td>
<td>[0.76]</td>
<td>[0.84]</td>
</tr>
<tr>
<td>Observations</td>
<td>1,612</td>
<td>1,612</td>
<td>1,612</td>
</tr>
<tr>
<td>Week-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pre SAR Period Statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Total Attempt</td>
<td>120.34</td>
<td>120.34</td>
<td>120.34</td>
</tr>
<tr>
<td>Mean Wave Height</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Mean Fr. Boat</td>
<td>0.07</td>
<td>0.27</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Note: The sample consists of daily observations from 7 May 2013 to 4 October 2017. SAR coefficients are estimated relative to a baseline in which Hermes operations were in place (164 days). Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. All regressions control for week by year fixed effects. Regressions estimated using Poisson quasi-maximum likelihood models. Standard errors are heteroscedasticity- and autocorrelation-robust using Newey-West with bandwidth equal to 21 days and 14 days in curly brackets and vertical bars, respectively. * p<.10 ** p<.05 *** p<.01.
Table B.5: Crossing Attempts: Robustness on Wave Height

<table>
<thead>
<tr>
<th>Crossing Attempts</th>
<th>Wave Height in Tripoli (t-1)</th>
<th>Max Wave Height in Tripoli (t and t-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inflatable</td>
<td>Inflatable + Unknown</td>
</tr>
<tr>
<td>Wave Height * Post SAR * Fr. Boat</td>
<td>-0.85</td>
<td>-2.10**</td>
</tr>
<tr>
<td>Wave Height</td>
<td>0.21</td>
<td>0.90</td>
</tr>
<tr>
<td>Wave Height * Fr. Boat</td>
<td>-1.68</td>
<td>0.41</td>
</tr>
<tr>
<td>Wave Height * Post SAR</td>
<td>0.17</td>
<td>0.52</td>
</tr>
<tr>
<td>Observations</td>
<td>1,612</td>
<td>1,612</td>
</tr>
<tr>
<td>Week-Year FE</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Pre SAR Period Statistics
- Mean Total Attempt: 120.34
- Mean Wave Height: 0.63
- Mean Fr. Boat: 0.07

Note: The sample consists of daily observations from 7 May 2013 to 4 October 2017. SAR coefficients are estimated relative to a baseline in which Hermes operations were in place (164 days). Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. All regressions control for week by year fixed effects. Regressions estimated using Poisson quasi-maximum likelihood models. Standard errors are heteroscedasticity- and autocorrelation-robust using Newey-West with bandwidth equal to 28 days. * p<.10, ** p<.05, *** p<.01.

Table B.6: Crossing Attempts on Wave Height Squared

<table>
<thead>
<tr>
<th>Crossing Attempts</th>
<th>Wave Height in Tripoli (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inflatable</td>
</tr>
<tr>
<td>Wave Height * Post SAR * Fr. Boat</td>
<td>-5.93***</td>
</tr>
<tr>
<td>Wave Height</td>
<td>-0.48**</td>
</tr>
<tr>
<td>Wave Height * Fr. Boat</td>
<td>1.65</td>
</tr>
<tr>
<td>Wave Height * Post SAR</td>
<td>0.37</td>
</tr>
<tr>
<td>Observations</td>
<td>1,612</td>
</tr>
<tr>
<td>Week-Year FE</td>
<td>✓</td>
</tr>
</tbody>
</table>

Pre SAR Period Statistics
- Mean Total Attempt: 120.34
- Mean Wave Height: 0.63
- Mean Fr. Boat: 0.07

Note: The sample consists of daily observations from 7 May 2013 to 4 October 2017. SAR coefficients are estimated relative to a baseline in which Hermes operations were in place (164 days). Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. All regressions control for week by year fixed effects. Regressions estimated using Poisson quasi-maximum likelihood models. Standard errors are heteroscedasticity- and autocorrelation-robust using Newey-West with bandwidth equal to 28 days. * p<.10, ** p<.05, *** p<.01.
Table B.7: Crossing Attempts with Different Locations

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossing Attempts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Height * Post SAR * Fr. Boat</td>
<td>-4.436**</td>
<td>-3.256***</td>
<td>-2.096**</td>
<td>-1.749</td>
<td>-0.191</td>
</tr>
<tr>
<td></td>
<td>(1.821)</td>
<td>(0.952)</td>
<td>(0.936)</td>
<td>(1.605)</td>
<td>(0.971)</td>
</tr>
<tr>
<td>Wave Height</td>
<td>-1.511*</td>
<td>-1.478***</td>
<td>-1.069*</td>
<td>-0.737</td>
<td>-0.459</td>
</tr>
<tr>
<td></td>
<td>(0.796)</td>
<td>(0.451)</td>
<td>(0.594)</td>
<td>(0.567)</td>
<td>(0.453)</td>
</tr>
<tr>
<td>Wave Height * Fr. Boat</td>
<td>1.818</td>
<td>2.313***</td>
<td>1.762**</td>
<td>1.237</td>
<td>0.0573</td>
</tr>
<tr>
<td></td>
<td>(1.558)</td>
<td>(0.723)</td>
<td>(0.834)</td>
<td>(1.339)</td>
<td>(0.875)</td>
</tr>
<tr>
<td>Wave Height * Post SAR</td>
<td>0.314</td>
<td>0.587</td>
<td>0.403</td>
<td>-1.231</td>
<td>-0.391</td>
</tr>
<tr>
<td></td>
<td>(0.964)</td>
<td>(0.615)</td>
<td>(0.673)</td>
<td>(0.867)</td>
<td>(0.568)</td>
</tr>
<tr>
<td>Observations</td>
<td>1.612</td>
<td>1.612</td>
<td>1.612</td>
<td>1.612</td>
<td>1.612</td>
</tr>
<tr>
<td>Week-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wave</td>
<td>Zuwara</td>
<td>Monastir</td>
<td>Al Huwariyah</td>
<td>Djerba</td>
<td>Annaba</td>
</tr>
<tr>
<td></td>
<td>Libya</td>
<td>Tunisia</td>
<td></td>
<td></td>
<td>Algeria</td>
</tr>
<tr>
<td>Pre SAR Period Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre Mean Outcome</td>
<td>120.341</td>
<td>120.341</td>
<td>120.341</td>
<td>120.341</td>
<td>120.341</td>
</tr>
<tr>
<td>Pre Mean Boat</td>
<td>0.292</td>
<td>0.292</td>
<td>0.292</td>
<td>0.292</td>
<td>0.292</td>
</tr>
<tr>
<td>Pre Mean Wave</td>
<td>0.581</td>
<td>0.674</td>
<td>0.761</td>
<td>0.68</td>
<td>0.771</td>
</tr>
</tbody>
</table>

Note: The sample consists of daily observations from 7 May 2013 to 4 October 2017. SAR coefficients are estimated relative to a baseline in which Hermes operations were in place (164 days). Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. Fr. Boat is aggregated at the week of the year level. All regressions control for week-by-year fixed effects. Regressions estimated using Poisson quasi-maximum likelihood models. Standard errors are heteroscedasticity- and autocorrelation-robust using Newey-West with bandwidth equal to 28 days. * p<.10 ** p<.05 *** p<.01.
Figure B.1: Nationalities of Migrants on the Central Route by Year

Note: Data are collected by the European Border and Coast Guard Agency and are based on detections at the border. Our subset is based on detections along the Central Mediterranean Route and the figures show the fraction of detections for the top six nationality from 2009 to 2017.
Figure B.2: Percentage of Migrants Intercepted at Sea by Libyan and Italian Coast Guards

Note: Data are from the United Nations High Commissioner for Refugees (UNHCR, 2017) that provides monthly data on the number of migrants intercepted at sea by Libyan and Italian coast guards. We construct the percentage of people rescued by types.

Figure B.3: Monthly Crossing Attempts

Data on crossings are provided by the *Polizia di Stato* (State Police, Ministry of Interior). Data on deaths at sea are described in Section 2.3. The figure shows the total number of monthly crossing attempts (sum of crossings and deaths).
Figure B.4: Density of Wave Height in Tripoli by Season

Note: We gather the data on significant wave height from the European Centre for Medium-Range Weather Forecasts (ECMWF). The density functions show the wave conditions by seasons in Tripoli.

Figure B.5: A Typical Inflatable Boat

Note: The figure is taken from https://www.alibaba.com where Chinese-made dinghies were advertised as "refugee boats" and were transshipped to Libya through other countries, i.e. Malta and Turkey.
Figure B.6: Probability of Encountering Large Waves

Note: The figure shows the probability of encountering waves up to “Wave Height” when the significant wave height is either 0.63 or 0.73 meters, as well as the corresponding relative difference.
Notes: The sample consists of daily observations from 7 May 2013 to 4 October 2017. SAR coefficients are estimated relative to a baseline in which Hermes operations were in place (164 days). Crossing attempts sum crossings and deaths. Significant wave height is measured in meters. We estimate Equation 3 80 times, using wave height at time $t + k$ instead of time t, with k ranging from 7 to 87. Fr. Boat is aggregated at the week of the year level. All regressions control for week by year fixed effects. Left panel shows the placebo for the coefficients of the wave height and right panel the triple interaction terms between Fr. Boat, post Mare Nostrum dummy and the wave height. Regressions estimated using Poisson quasi-maximum likelihood models. The solid red line indicates the estimated coefficients, while the dotted and dashed line indicate the 1% and 5% critical values (computed based on the estimated standard deviation).
Note: The sample consists of daily observations from 1 January 2016 to 31 December 2020. The Libyan route is considered as treated unit. Time indicate the month of the year. Crossing attempts sum crossings and deaths. All regressions control for week-by-year fixed effects. In February 2019 no crossing attempts occurred, no coefficient is estimated because it is absorbed by week-by-year fixed effects. Regressions estimated using Poisson quasi-maximum likelihood models. Standard errors are cluster at the week of the year level (5% confidence interval).
Appendix C: NGO Operations (For Online Publication Only)

In addition to official operations by the EU government, several humanitarian operations were conducted by NGOs during our sample period; however these were much smaller in scope and intensity than official operations. The most active NGO, Malta-based Migrant Offshore Aid Station (MOAS), deployed fishing vessels and two drones (MOAS, 2014, 2015, 2016, 2017). MOAS offered an example that was later been imitated by other NGOs. In 2015, the Brussels and Barcelona branches of Médecins Sans Frontières (MSF) developed their own SAR capabilities using their own vessels; German NGO Sea-Watch also purchased a vessel to search for migrant boats in distress in 2015. In February 2016, SOS Mediterranee chartered a 77 meter ship to conduct operations in partnership with the Amsterdam branch of MSF (see Table C.1).

<table>
<thead>
<tr>
<th>NGO</th>
<th>Country</th>
<th>Flag</th>
<th>Vessel</th>
<th>Operational Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jugend Rettet</td>
<td>Germany</td>
<td>The Netherlands</td>
<td>Iuventa</td>
<td>Jul 2016 - Nov 2016</td>
</tr>
<tr>
<td>Life Boat</td>
<td>Germany</td>
<td>Germany</td>
<td>Minden</td>
<td>Jun 2016 - Nov 2016</td>
</tr>
<tr>
<td>MSF</td>
<td>France</td>
<td>Italy</td>
<td>Vos Prudence</td>
<td>Mar 2017 - Oct 2017</td>
</tr>
<tr>
<td>SOS Mediterranée</td>
<td>France-Italy-Germany</td>
<td>Gibraltar</td>
<td>Aquarius</td>
<td>Feb 2016 - Dec 2016</td>
</tr>
</tbody>
</table>

Source: The list of NGOs operating in the Mediterranean Sea is available in the Italian Navy report (2017). The table distinguishes between the country and flag of the boat, the vessel type and the operational period.

All of these organizations usually initiate rescues between 10 and 30 nautical miles off the coast of Libya upon authorization of the Italian Maritime Rescue Coordination Centre (MRCC). NGOs follow one of two different operating models. MOAS, MSF, and SOS-Mediterranee conduct extensive SAR operations that involve the rescuing of migrants with larger vessels that can transport them to Italian ports. Smaller NGOs such as Sea-Watch and Pro-Activa focus on rescue and the distribution of life preservers and emergency medical care while waiting for larger ships to transport migrants to Italian port.

In Figure C.1, we see that NGO activity only constituted a substantial portion of all SAR activity starting in June 2016 during Triton II. Hence our estimates of responsiveness to crossing conditions during early SAR operational periods are likely to be unaffected by NGO activity.
Figure C.1: Rescue Activity by Organization 2014-2017

Note: Data provided by the European Border and Coast Guard Agency known as Frontex. The information is disclosed by Frontex for the period from 2015 to 2017. Each line represents the fraction of monthly crossings that are intercepted by any given organization (EU coast patrol, Maritime force, NGOs and Commercial boats). Their sum is always one.