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Abstract

Neighborhood boundaries are often determined by physical topography, transportation
networks or the administration of public goods (e.g., school attendance zones). We
present a simple model of boundaries that predicts discontinuities in household de-
mographics, the supply of amenities and home prices at physical and administrative
boundaries. We take these predictions to the data and find abundant evidence of dis-
continuities across a wide range of observable dimensions – the universe of variables
that are available in the 2020 Census at the Block Group level – and five different
types of boundaries. We draw two important implications from these findings: even
narrowly targeted place based policies may have much broader impacts if they involve
a new administrative boundary, and researchers should implement boundary disconti-
nuity designs with caution, as the key identification assumption is may not hold except
in narrow applications.
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1 Introduction

For as long as there have been cities, there have been neighborhoods. For as long as there

have been neighborhoods, households, firms, and governments have sorted between them.

A rich literature following from Tiebout [1956] has studied both the process of1 and the

consequences of2 neighborhood sorting. Fundamental to this literature is the idea that

neighborhood boundaries matter. They represent more than simply lines on a map, and

to the extent that they induce distortions that impact decisionmakers, we should observe

different outcomes across boundaries. As such, boundaries will shape both where people live

and how amenities are distributed spatially.

In this paper, we develop a simple model that clarifies how boundaries may distort the

location decisions of households, which in turn will distort the amenities that are supplied

by private firms and the public goods that are provided by local governments. Importantly,

our model suggests that these distortions will manifest as discontinuities in the demographic

and amenity bundle of neighborhoods and in neighborhood prices. We test for the existence

of spatial discontinuities in the universe of all publicly available variables from the 2020

US Census, analyzing block groups near five very different types of borders: historical rail

and highway networks, contemporary school district boundaries and attendance zones, and

county lines.

We find overwhelming evidence of discontinuities across a wide range of variables and all

types of boundaries. The demographic characteristics of residents, features of the housing

stock, labor market profiles, and government assistance take-up all systematically vary dis-
1See, for example, Epple et al. [1984, 2003], Bayer et al. [2004], Caetano [2019], Caetano and Maheshri

[2023]
2See, for example, Black [1999], Bayer et al. [2007], Chetty et al. [2018]
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continuously at boundaries. The net effect of this is ultimately capitalized into prices: we

estimate average price differentials of 7-22% across these boundaries. We conduct a series

of placebo tests to ensure that these differentials correspond to boundary effects as opposed

to other confounders, and that these boundary effects are not merely statistical artifacts of

our estimation and testing procedure.

Our results imply that researchers should be cautious when attempting to use histor-

ical boundaries to identify the effects of contemporary neighborhood characteristics, e.g.,

socioeconomic compositions, home prices, crime, or other urban features in a boundary dis-

continuity design (BDD). The key identifying assumption that is common to such studies

is that the effects of boundaries are mediated through a single characteristic. Our find-

ings suggest that such identifying assumptions are unlikely to hold, as boundaries affect a

wide range of neighborhood characteristics. We conjecture that this is likely due to the fact

that households and suppliers of amenities continuously sort, so changes in the features of

neighborhoods will beget further changes in features of neighborhoods in a self-reinforcing

feedback loop. The upshot is that BDDs may be more appropriate to estimate short-run

effects before the sorting process can unfold. It is common practice to support the identifying

assumptions of a BDD by showing that potentially confounding observable characteristics

do not vary discontinuously at neighborhood boundaries. We provide evidence that such

demonstrations are probably statistically under powered when the analysis covers smaller

geographies, e.g., a single city, county or state.

Our analysis also underscores the importance for researchers to broaden the scope of

their assessments of the impacts of historical boundaries. For instance, a large literature has

shown that historical redlining practices in US cities still affects residential segregation today
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(Zenou and Boccard [2000], Gale [2021]). Our findings indicate that these studies almost

certainly understate the scope of the effects of redlining, as these efforts likely affected the

urban landscape in a profound way.

To model the boundary effects we draw from seminal papers that leverage quasi-random

assignment of individuals and households near boundaries such as Black [1999] and Dell

[2010]. The key innovation in our analysis is that we explore whether every neighborhood

attribute varies at the boundary, in contrast to a standard approach of exploiting arguably

exogenous variation in a single variable at the boundary. Finally, this paper is related to

the empirical literature that leverages historical boundaries for identification. A growing

literature that expands on the findings of Ananat [2011] to show that historical rail place-

ment subdivides cities in a way that creates more neighborhood options, segregation, and

worse outcomes for non-whites (Chyn et al. [2022], Cox et al. [2022]). In the context of

our findings, historic railroad boundaries likely contribute to mobility and crime outcomes

through local differentials in the entire bundle of neighborhood characteristics, not simply a

low dimensional proxy of racial segregation.

The remainder of this paper is organized as follows. In Section 2, we present a simple

model of consumers location decisions, and we characterize how they are affected by physical

and administrative boundaries. In Section 3, we present our empirical approach to estimate

discontinuities in a large set of variables with no a priori spatial ordering, and in Section 4,

we describe the various sources of historical and contemporary data that we use to implement

this approach. In Section 5, we present our results. We discuss these results in the context

of other research in Section 6 before concluding in Section 7.
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2 Conceptual Framework

We motivate how boundaries generate discontinuities in households’ location choices in an ex-

tremely simplified, illustrative model. Boundaries are modeled as either physical distortions

that increase the distance between points on opposite sides of the boundary, or mechanisms

that allow for different levels of public goods to be supplied (or both). For simplicity, we

assume that these boundaries are exogenously located along with two producers who are

exogenously located at points 0 < y0 ≤ y1 < 1 on the unit interval, and a unit mass of con-

sumers, indexed by i, who endogenously locate at points xi ∈ [0, 1]. There is also a public

good that is supplied exogenously at a level of g.

Let dji = |xi − yj| be the distance between consumer i and producer j. Then consumer

i’s utility is given by

U (xi) = αiu
(
d0i
)
+ (1− αi)u

(
d1i
)
+ v (g) (1)

where the parameter αi is drawn from a single peaked distribution over (0, 1). We assume

that u′ < 0 and u′′ > 0. That is, αi represents consumer i’s relative preference for producer

0 to producer 1, and all consumers prefer locating closer to producers (with a diminishing

loss in marginal utility in distance to producers). We also assume that v′ > 0.

Consumer i chooses xi to maximize the objective in equation (1). The first order condition

implies
αi

(1− αi)

u′ (d0i )

u′ (d1i )
= 1 (2)

in equilibrium. This has a familiar interpretation, as the left hand side of equation (2) is the

marginal rate of substitution between the two producers. The right hand side of the equation
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Figure 1: Spatial Equilibrium
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corresponds to the price ratio if we understand distances to producers to be effective prices

since − ∂d1i
∂xi/

∂d0i
∂xi

= 1. No consumer will ever locate outside of the interval [y0, y1], as they

would be strictly better off moving into the interval. Hence we can illustrate the spatial

equilibrium in the top panel of Figure 1.

We now introduce an exogenous boundary at some point B ∈ (y0, y1). A basic char-

acteristic of many boundaries such as highways or rivers is that they distort the physical

environment. We capture this by modeling the distance between any two points on opposite
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sides of B increased by β ≥ 0. Consumer i’s first order condition is now

αi

(1− αi)

u′ (d0i )

u′ (d1i + β)
= 1 xi < B (3)

αi

(1− αi)

u′ (d0i + β)

u′ (d1i )
= 1 xi > B (4)

It follows that all consumers with x⋆
i < B before the introduction of the boundary remain

to the left of the boundary and vice versa. Moreover, the distortion has the effect of shifting

the mass of consumers away from the boundary with a greater shift for those consumers

who are located farthest from the boundary. We illustrate the effects of a physical boundary

on spatial equilibrium in panel (b) of Figure 1. In general, physical boundaries generate

discontinuities in the locations of consumers.

A second characteristic of many boundaries such as school zones or political borders is

that they allow for public goods to be differentiated.3 We model this by specifying g (x) = g0

at all points x ≤ B and g (x) = g1 at all points x > B where g0 < g1 without loss of gen-

erality. This has the effect of shifting a mass of consumers just to the left of B across the

boundary. We illustrate the effects of an administrative boundary on spatial equilibrium in

panel (c) of Figure 1. In general, administrative boundaries also generate discontinuities in

the locations of consumers. Of course, many boundaries are both physical and administra-

tive. For example, political boundaries may coincide with rivers or school district boundaries

may coincide with roadways. This does not affect the qualitative conclusions of our analysis.

We should note that these conclusions are likely to persist – or even strengthen – if we en-

dogenized the locations of boundaries or producers or if we endogenized the levels of public
3To simplify notation, we assume consumers exactly at the boundary can choose the side of the boundary

to which they locate.
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goods since this would increase incentives for sorting.

If consumers belonged to different demographic groups, and these groups had system-

atically different tastes for the producers (the distributions of αi differed across groups) or

different tastes for public goods (v (·) differed across groups) then this simple analysis would

yield further insights. Because boundaries would generate discontinuities in the locations

of both groups of consumers, then we would generically observe discontinuities in demo-

graphic compositions across boundaries. Moreover, if producers adjusted their outputs to

cater to their clientele, then this would imply discontinuities in the amenities supplied across

boundaries. Similarly, to the extent that governments respond to the preferences of their

constituencies, then this would imply discontinuities in the public goods supplied across

boundaries. Finally, as amenities and public goods are capitalized into home prices, this

may affect the demographics of new consumers.

We can summarize each of these mechanisms contribute to the positive feedback loops

shown in the following diagram:

Demographics

��

++Boundaries
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66

Disc. ))

Home Prices

jj

rrAmenities

33
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Boundaries generate discontinuities in demographics and amenities. Demographics and

amenities are then co-determined with home prices through the sorting of households (con-

sumers) and adjustments made by the suppliers of private amenities (producers) and public

amenities (governments). Even if this sorting process is continuous, the ultimate effect of a
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boundary on the urban landscape will be discontinuities in the characteristics of residents,

characteristics of the amenity bundle, and prices.

3 Empirical Approach

In order to test for these predicted discontinuities, we employ a scalable approach to estimate

discontinuous boundary effects on a large set of variables. We observe a boundary network

(e.g., the interstate highway network) as a series of curves in space, and we observe charac-

teristics (e.g., population demographics or house prices) at a set of discrete points in space,

which, in an abuse of nomenclature, we refer to as neighborhoods. We index neighborhoods

with j.

Standard approaches to estimate boundary effects require researchers to know which side

of a boundary is treated and which side of a boundary is untreated. These approaches

then can then identify treatment effects in a regression discontinuity framework where the

running variable is distance to boundary (untreated neighborhoods are usually assigned

negative distances, and treated neighborhoods are usually assigned positive distances). In

our setting, we do not have a priori treated and untreated sides of boundaries, as our goal

is simply to identify discontinuities and estimate their magnitudes. Moreover, we seek to

estimate these effects on vast, highly intersecting boundary networks that span the entire

United States. For these reasons, we must modify the standard approach.

First, for a given boundary network, we divide all boundaries into smaller sections of

equal length. We denote these as boundary sections, and we index them with b. For each

boundary section, we consider a set of nearby neighborhoods, which we denote as Jb. We
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locate the nearest neighborhoods on either side of boundary section b in Jb and refer to them

as index neighborhoods. For each neighborhood characteristic C, boundary section b, and

neighborhood j ∈ Jb, we construct a dummy HCbj = 1 for all neighborhoods that are on the

same side of the boundary as the index neighborhood with a higher value of C (i.e., the high

side) and HCbj = 0 otherwise.

For each j ∈ Jb on the high side, we define dCbj to be equal to the distance from j to the

boundary, and for each j on the low side, we define dbj to be equal to −1 times the distance

from j to the boundary. We then estimate the following regression:

Cbj = δCHCbj + f− (dCbj)× 1 (dCbj < 0) + f+ (dCbj)× 1 (dCbj > 0) + ϵCbj (5)

where f−(·) and f+ (·) are flexible functions of the distance to the boundary and ϵCbj is an

error term. The parameter δC corresponds to the boundary effect for characteristic C. Under

the assumption that the unobservable determinants of Cbj vary continuously at the dCbj = 0

threshold, δC will be identified and can be estimated by least squares.

Placebo Validation Exercise

We consider the following placebo exercise to validate our empirical strategy. For each

characteristic C and boundary section b, we randomly draw ξCb from XXX. We then estimate

the placebo regression

Cbj = δpCHCbj + fp
− (dCbj)× 1 (dCbj < ξCb) + fp

+ (dCbj)× 1 (dCbj > ξCb) + ϵpCbj (6)
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which can be understood as an analog to equation (5) in which each boundary section has

been perturbed by ϵCb towards the high side. If our identifying assumption is satisfied, then

we would expect our estimate of δpC to be equal to zero.

4 Data

To estimate the boundary discontinuities δC , we construct a dataset that is comprised of

Census Block groups that are geospatially merged to the nearest segments of each boundary

type. Latitude and longitude estimates for the center of population of each Block group is

provided by the National Historical Geographic Information System (NHGIS), and we use

ARCGIS software to map population centers to 2 mile segments of each boundary type. The

rich set of publicly available data at the Census Block group level allows us to describe the

spatial area surrounding each boundary segment along more than one thousand dimensions.

We describe both the boundary network data and neighborhood variables in further detail.

4.1 Boundary Networks

We analyze three classes of boundaries: transportation networks, educational boundaries,

and political boundaries. Transportation networks form physical boundaries as they deform

the urban landscape. They are costly to cross and often delineate distinct neighborhoods. We

consider historical rail and highway networks. The US railway network peaked at 254,000

miles of track in the early twentieth century, and today it is comprised of approximately

160,500 miles of track.4 We measure the historical US rail network using the Atack [2013]
4American Association of Railroads, Chronology of America’s Freight Railroads.

https://www.aar.org/chronology-of-americas-freight-railroads/.
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historic GIS transportation database created from the New Century Atlas maps published

in 1911. This includes all passenger and freight rail lines that were in operation circa 2011.

The Interstate Highway System stretches nearly 50,000 and is part of a larger network that

includes state highways. For the analysis we employ a digitized map of only interstate

highways made publicly available by the US Department of Transportation as of 2020.5

Figures 4 and 5 lay bare the spatial features of the transportation data, and illustrates the

relative density of the US railroad network compared to the interstate highway network.

School district and school attendance zone boundaries are analyzed using shape files pro-

vided by NHGIS. The National Center for Education Statistics (NCES) conducts an annual

update of school district boundaries dating back to 1995, and we obtain boundaries from

the 2020 update. Figure 6 shows that our school district sample is nationally representative

and reflects the political economy of different states. In Southern states it is common for

school districts to span the entire county, with an extreme example being Florida where

counties and districts cover expansive areas. In Northern states like New Jersey and Ohio,

counties are divided into cities and small townships that manage school districts. Unlike

school districts, there is scant nationally representative spatial data for school attendance

zones. NHGIS hosts the 2009-2010 shape file created by the NSF funded SABINS project.

Figure 7 shows the national coverage of our attendance boundaries, which we restrict to

elementary schools.6

Finally, we consider political boundaries in the form of county lines. The publicly avail-

able shape file is hosted by NHGIS and is the Census Tigerline 2020 US County map.
5Our analysis omits segments of interstate < 0.5 mile long. Additionally, state managed highways are

not present in the shape file.
6For our purposes, a school is defined as an elementary school if it enrolls third grade students.
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Boundaries for all counties in the contiguous US are shown in Figure 8. While the county

shape file has near full national coverage (over 3000 counties), a large share of county bound-

aries exist in remote areas. We mitigate this sampling issue in two ways for all boundaries.

By imposing that each boundary strip be no longer than 2 miles, we restrict the distance that

two Block groups in remote areas can be mapped to the same boundary. Furthermore, our

research design requires both sides of each boundary segment to have a sufficicent number of

Block groups within one mile. In practice, this means that most rural county boundaries are

not used for estimation. In Section 4.3, we present summary statistics for the Block groups

near each transportation network and compare the samples to the universe of Census Block

groups.

4.2 Neighborhood Characteristics

Block groups are small Census-designated geographies with between 600 and 3,000 residents.

We obtain data at the Block group level from the 2020 Decennial Census and the 2016-

2020 American Community Survey (ACS). The two sources provide over 1,700 variables

that characterize the people, housing, and amenities for each Block group in the sample

contiguous 48 states.

Our analysis relies on a spatial assignment of Block groups to (specific sides of) bound-

aries. NHGIS provides estimates of the latitude and longitude for each Block group center of

population, which we use as a proxy for the location of each neighborhood. Each boundary

network is divided into two mile segments, and neighborhoods within a one-mile radius of

each segment are mapped to that boundary. This yields cross-sections of neighborhood level

characteristics for each of our five boundary networks.
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4.3 Sample Description

In Table 1, we compare the Block groups (neighborhoods) in each boundary network cross-

section to the universe of Block groups in the contiguous US. The neighborhoods in columns

2-5 are within one mile of each boundary type, with the sample restricted to boundaries with

at least two block groups on either side. Millions of people live within a mile of our sample

boundaries with the most being near railroads (98.7 million) and the least living near county

lines (25.9 million). Neighborhood population means range from 1,674 to 1,859 compared to

a population average of 1,776.

Differences between the neighborhoods in each boundary network sub-sample and the

full sample reflect the fact that our sample restrictions exclude rural areas. This implies

higher house prices and less White populations in all sub-samples than in the full sample.

Urban incomes are higher, and areas with denser county lines are more likely to be in the

Northeast. However, the disamenity of living very close to physical boundaries implies lower

incomes near railroad and highway boundaries.

Because our analysis compares block groups within boundary type, differences in means

across samples would only matter if the goal was to compare empirical results by boundary

type for inference about behavioral differences. Our analysis does not rest on determining

which boundary produces the strongest behavioral response.

5 Results

Figure 2 presents histograms of the estimates of boundary effects (δC) for all neighborhood

characterisics and five different boundary types. For each bounday type, we present a his-
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Table 1: Summary Statistics

Full Data Railroad Interstate School District School Zone County Line

Variables (1) (2) (3) (4) (5) (6)

Population 1,775.72 1,673.50 1,752.93 1,738.72 1,859.47 1,738.77
(862.0) (786.3) (806.1) (798.1) (909.6) (822.7)

House Prices 309,455.81 318,913.88 356,345.96 342,514.65 318,225.34 361,239.23
(261229.1) (282986.5) (293976.6) (280384.3) (237131.8) (292144.2)

Income 79,729.77 75,243.12 79,682.70 85,568.20 82,652.66 89,051.29
(40723.4) (40989.6) (41770.9) (43935.7) (42067.4) (45393.4)

Public Asst. 0.11 0.13 0.12 0.11 0.11 0.10
(0.121) (0.134) (0.130) (0.123) (0.121) (0.117)

Share White 0.61 0.56 0.51 0.57 0.55 0.59
(0.304) (0.308) (0.305) (0.303) (0.293) (0.299)

Share Latino 0.18 0.21 0.22 0.19 0.21 0.15
(0.233) (0.247) (0.250) (0.238) (0.242) (0.194)

Share Black 0.11 0.13 0.15 0.12 0.13 0.15
(0.198) (0.215) (0.224) (0.205) (0.207) (0.233)

Own Home 0.31 0.39 0.39 0.33 0.33 0.33
(0.241) (0.249) (0.258) (0.250) (0.247) (0.257)

Single Family 0.74 0.68 0.67 0.72 0.74 0.69
(0.266) (0.283) (0.300) (0.287) (0.278) (0.311)

Rooms / Unit 5.91 5.61 5.57 5.91 5.91 5.94
(1.378) (1.325) (1.385) (1.479) (1.483) (1.586)

Observations 190900 56444 41507 30286 34509 12956

Pop. Estimate 306M 98.7M 74.4M 59.1M 63.5M 25.9M

Notes: Means and standard deviations (in parentheses) for the full sample of 2020 Census
Block groups (column (1)) and the five subsamples of Block groups for each corresponding
boundary network (columns (2)-(6)).
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togram of all δ̂C and we overlay a histogram of all δ̂C that are significant at the 95% level.

In order to facilitate comparison across estimates, we normalize the standard deviation of

all dependent variables to 1.7

For the two physical boundaries, railroads and highways, all statistically significant

boundary effects are positive, which supports our selection procedure for HCbj (the “high

side”). Moreover, the vast majority of economically significant effects (defined as δ̂C > 0.05)

are statistically significant. The range of effects for highways and railroads is similar, though

railroad effects tend to be slightly larger than highway effects.

For the two administrative educational boundaries, we estimate even larger effects than

for the physical boundaries. Once again, all statistically significant boundary effects are

positive, and the vast majority of economically significant effects are statistically significant.

Meanwhile, for the administrative political boundary, we estimate fewer statistically signif-

icant effects, though the qualitative patterns from other boundaries are reproduced. This

is possibly due to the fact that the majority of county borders are in rural areas that offer

fewer observations for estimation.
7For all results in the main text, we model the relationship between each outcome and distance to the

boundary as a third order polynomial function (i.e., f+ and f− are cubic polynomials).
Appendix Figure 9 suggests that our estimates of δC could vary based on modelling assumption. As a

specification test we replicated all results assuming f+ and f− were linear, which we summarize in Appendix
Table 5. A comparison with our main results in Table 2, shows that our cubic model is more conservative
in the sense that we estimate fewer statistically significant outcomes.
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Figure 2: Boundary Effects
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In order to ensure that our results are not simply a statistical artifact of our estima-

tion and testing procedure, we reproduce these histograms using estimated effects from our

placebo validation exercise in Figure 3. Three observations are immediate for all boundary

types: (1) The overwhelming majority of placebo effects are not statistically significantly

different than zero. (2) The distributions of placebo effects are roughly symmetric around

zero.8 (3) The magnitudes of estimated placebo effects are substantially smaller than the

magnitudes of the estimated boundary effects. All three observations strongly support our

identification strategy.
8The slight skew to the right is likely due to our selection procedure for the “high side.”
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Figure 3: Placebo Boundary Effects
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Table 2: Summary of Results

(1) (2) (3) (4)
Boundary Type Frac.

Statistically
Significant

Effects (All)

Avg.
Statistically
Significant

Effect Size (All)

Frac.
Statistically
Significant

Effects
(Selected
Variables)

Avg.
Statistically
Significant
Effect Size
(Selected
Variables)

Railroad 0.756 0.264 0.783 0.271
Highway 0.508 0.301 0.531 0.306
School District 0.610 0.262 0.643 0.304
School Attendance Zone 0.810 0.403 0.841 0.405
County 0.167 0.471 0.178 0.501

Notes: In columns (1) and (2), we present stastics for δ̂C for the entire sample of neighborhood
characteristics. In columns (3) and (4), we present statistics for δ̂C for the subsample of non-
negative neighborhood characteristics that have fewer than 10% missing observations and
no extreme outliers. Statistical significance is reported at the 95% level.

We summarize these results in Table 2. The fraction of statistically significant effects

in column (1) is substantially greater than 5%, which supports our theory that bound-

aries should generate systematically generate discontinuities in neighborhood characteristics.

From column (2), we see that these effect sizes are of similar size for railroads and highways,

slightly larger for school districts and counties, and roughly 50% larger for school attendance

zones. This may capture a greater degree of household sorting across school zones than other

boundaries.

To ensure that these results are not driven by a large number of Census variables being

uninformative, in columns (3) and (4) we consider only a subset of variables for which fewer

than 10% of observations are missing, all entries are numeric, no observations accidentally

take on negative values, and no variables contain extreme outliers (a coefficient of variation

over 2000). This eliminates roughly 20% of all neighborhood characteristics from our analy-
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Table 3: Summary of Placebo Tests

(1) (2)
Boundary Type Fraction of

Statistically
Significant Placebo

Effects (All)

Average
Statistically

Significant Placebo
Effect Size (All)

Railroad 0.039 0.045
Highway 0.053 0.065
School District 0.026 0.035
School Attendance
Zone

0.043 0.020

County 0.038 0.010

Notes: In columns (1) and (2), we present stastics for δ̂C for the entire sample of neighborhood
characteristics. In columns (3) and (4), we present statistics for δ̂C for the subsample of non-
negative neighborhood characteristics that have fewer than 10% missing observations and
no extreme outliers. Statistical significance is reported at the 95% level.

sis. Nevertheless, we find a similar prevalence and size of significant effects as we did in the

unrestricted sample of columns.

Finally, we summarize our placebo tests in columns (1) and (2) of Table 3. All entries

in column (1) are close to 5%, which is what we would expect when considering significance

at the 95% level. (Importantly, all entries in columns (1) and (4) of 2 are much larger than

5%.) Meanwhile, column (2) shows that even the few statistically significant placebo effects

that we do find are not economically significant.

6 Discussion

Our finding of robust, widespread boundary discontinuities invites caution to practitioners

seeking to implement regression discontinuity designs at geographical boundaries, which
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are commonly known as boundary discontinuity designs (BDD) or geographic regression

discontinuity (GRD) designs. Using the notation above, in such a design, a researcher

hopes to estimate the effect of a treatment on an outcome Cbj in which treated units j

lie to one side of a boundary b (HCbj > 0) and untreated units lie to the other side of a

boundary (HCbj < 0). The primary idenfiying assumption in such a design is that the average

treatment effect should be continuous as we approach the boundary from either side (Keele

and Titiunik [2015]). A common test of the this assumption is to demonstrate that other

potential confounders C ′
bj that are observed to the researcher do not vary discontinuously

at the boundary, with the implication being that any discontinuity that is estimated at the

boundary can then be attributed to treatment.

Our results suggest that such an assumption is unlikely to be satisfied in the practice. Yet,

this is seemingly at odds with the covariate balance tests that often accompany such designs

(e.g., Bayer et al. [2007], Gibbons et al. [2013]). We argue that this is due to the fact that

tests of discontinuities in neighborhood characteristics are likely to be underpowered when

the sample is a single city, metropolitan area or even state. To make this point explicitly,

we replicate our anlaysis separately for 9 large Core-based statistical areas (CBSA) in the

United States using school attendance areas as boundaries and summarize our results in

Table 4.9 While the estimated effect sizes for each CBSA are similar to those of the nation

as a whole, the precision of these estimates is dramatically smaller. Instead of finding

statistically significant discontinuities in over 80% of neighborhood characteristics, we find

statistically significant discontinuities in 10-25% of neighborhood characteristics depending
9We select these 9 CBSAs because they have the largest number of recorded school attendance boundaries

and the largest number of observations that can be used for estimation of boundary discontinuities. In this
sense, these results should be seen as conservative since they are the most stastically powered subsamples.
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Table 4: School Attendance Zone Boundary Discontinuities by City

(1) (3)
City (CBSA) Fraction of

Statistically
Significant Effects

(All)

Fraction of
Statistically

Significant Effects,
Selected Variables

All US 0.810 0.841
Atlanta 0.192 0.179
Washington, DC 0.126 0.124
Denver 0.107 0.106
Houston 0.187 0.192
Miami 0.242 0.222
Minneapolis 0.152 0.146
Philadelphia 0.192 0.183
Riverside 0.185 0.193
Tampa 0.162 0.161

Notes: In column (1) we present stastics for δ̂C for the entire sample of neighborhood char-
acteristics, and in column (2) we present statistics for δ̂C for the subsample of non-negative
neighborhood characteristics that have fewer than 10% missing observations and no extreme
outliers. Statistical significance is reported at the 95% level.

on city. Hence, researchers should be careful when relying on such tests of (the lack of)

discontinuities in potential confounders to validate their research designs.

We should note that our findings do not imply that boundary discontinuity designs are

never appropriate. Instead, they indicate that these designs are better suited for estimating

certain classes of treatment effects. The fact that we find discontinuities in such a broad

set of neighborhood characteristics suggests some (endogenous) relationship between these

characteristics. As alluded to in Section 2, an attractive basis for this relationship is some

endogenous process of sorting of households and suppliers of amenities. Of course, such

a process takes time to unfold. As a result, boundary discontinuity designs may be more

successful at identifying short-run treatment effects where the outcome is observed fairly
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soon after the introduction (or removal) of a boundary.

7 Conclusion

Boundaries are ubiquitous and unavoidable. Physical structures, both natural and man-

made, distort the urban landscape. So too do administrative boundaries that allow for the

differentiation of public goods. In this paper, we present a simple model that yields the pre-

diction that these distortions will manifest as discontinuities in neighborhood characteristics

across boundaries of many types. We then show that a comprehensive set of neighborhood

characteristics – the universe of publicly available characteristics in the decennial Census –

exhibit discontinuities at a broad set of physical, administrative and political boundaries.

These discontinuities are sizeable, systematic, and not merely statistical artifacts of how

spatial data are collected.

Given these findings, we argue that the popular boundary discontinuity design should be

applied with caution as its core identifying assumption may not hold in certain settings, and

a standard validation exercise of this assumption is, in practice, probably underpowered to

draw a meaningful conclusion. This yields an insight that should be taken to heart by both

policymakers and researchers. Although the short-run effects of boundaries may be narrow,

the long-run effects of boundaries are likely to be broad in scope, even if the treatment

induced by the boundary is very narrow. Shifting a school attendance boundary has the scope

to affect far more than educational outcomes; adding a highway will affect neighborhoods

in far more profound ways than changing traffic patterns; past institutional boundaries such

as redlines that are no longer in effect may still generate dramatic discontinuities in the
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present day. Policymakers would be wise to consider these knock on effects when assessing

if and where to place boundaries. And researcher should perhaps trade-off the hope of using

boundaries for the sharp identification of narrow treatment effects for the prospect of using

boundaries to explain a broader set of spatial phenomena.
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Online Appendix

A Data and Analysis

A.1 Data and Sample Construction

Figure 4: RailRoads
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Figure 5: Highways

Figure 6: School Districts
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Figure 7: School Attendance Zones

Figure 8: Counties

31



A.2 Robustness of Model Specification

Figure 9: Mean Home Values by Distance to the Boundary, 2020 Census
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Table 5: Summary of Results

(1) (2) (3) (4)
Boundary Type Fraction of

Statistically
Significant Effects

(All)

Average
Statistically

Significant Effect
Size (All)

Fraction of
Statistically

Significant Effects,
Selected Variables

Average
Statistically

Significant Effect
Size, Selected

Variables

Railroad 0.835 0.228 0.873 0.232
Highway 0.623 0.223 0.646 0.222
School District 0.731 0.251 0.759 0.256
School Attendance
Zone

0.899 0.375 0.930 0.377

County 0.268 0.271 0.283 0.294
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