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Abstract

Neighborhood boundaries are often determined by physical topography, transportation net-
works, or the administration of public goods (e.g., school attendance zones). We present
a simple model of boundaries that predicts discontinuities in household demographics, the
supply of amenities, and home prices at physical and administrative boundaries. We take
these predictions to the data and find abundant evidence of discontinuities in a wide range of
observable dimensions – the universe of variables available in the 2020 Census at the Block
group level – and six different types of boundaries. We draw two important conclusions from
these findings: (1) researchers should implement boundary discontinuity designs with caution
because the key identification assumption may not hold except in narrow applications, and (2)
even narrowly targeted place-based policies may have much broader impacts if they involve
a new administrative boundary. In the case of school zones, where we find the strongest evi-
dence of Tiebout sorting, focusing on the house price capitalization of school quality alone will
understate the true cost to access better schools and neighborhoods in US housing markets.
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1 Introduction

Cities are subdivided into neighborhoods by boundaries that can be natural, physical, political

and administrative. In principle, boundaries may partition cities into noticeably distinct neighbor-

hoods characterized by the interactions of households, firms, and local governments. Alternatively,

boundaries may simply exist in parallel to the lived experiences of local residents and go otherwise

unnoticed. In the former view, a rich literature following from Tiebout (1956) has studied both

the process of1 and the consequences of2 neighborhood sorting. Fundamental to this literature is

the idea that neighborhood boundaries represent more than simply lines on a map, they induce

distortions that impact decision makers, making it difficult to attribute differences across bound-

aries to a single source. Meanwhile, a relatively young literature in empirical social science has

embraced the alternative view in hopes of leveraging boundaries for causal inference. 3 Ultimately,

it is an empirical question as to which of the two views best describes reality, the answer of which

contributes to our fundamental understanding of the distribution of economic activity across space

(Clark et al. (2003)).

The extent to which boundaries propagate Tiebout sorting highlights a tension between be-

havioral responses of economic agents and policy evaluation using boundaries. In spatial econo-

metrics, boundaries represent geographic thresholds where differences in outcomes are caused only

by a treatment of interest. So long as unobserved confounders vary smoothly across the boundary

space, the models produce estimates that meet a high bar for internal validity (Keele and Titiu-

nik (2015); Butts (2023)). The challenge for researchers is the long-held intuition that adjacent

neighborhoods separated by boundaries differ in a variety of ways,4 and only rough proxies for

neighborhood demographics are typically available to rule out Tiebout sorting. Notwithstand-

ing, the rich tapestry of boundaries in the urban landscape lends to research evaluating access to

public goods and services, exposure to particular place-based interventions, proximity to private
1See, for example, Epple et al. (1984, 2003); Bayer et al. (2004); Caetano (2019); Caetano and Maheshri (2023b)
2See, for example, Black (1999); Bayer et al. (2007); Chetty et al. (2018)
3The strategy of comparing groups on opposite sides of a boundary to identify the effects of an intervention

underlies a broad class of empirical approaches that includes boundary fixed effects, spatial difference-in-differences,
and boundary discontinuity designs.

4The notion of a “wrong side of the railroad tracks” is at least a century old, having found its way into a wedding
announcement in the Daily Inter Ocean (Chicago) in 1903.
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consumption opportunities, residential segregation, and network effects.

It is perhaps surprising then that comprehensive empirical evidence of Tiebout sorting (or the

lack thereof) at neighborhood boundaries does not exist despite the broad appeal of spatial models

exploiting boundaries for identification. This could be because the estimation of boundary models

is data intensive, and the comparative advantage of boundary designs - sharp inference about a

particular policy affecting a small area of interest - offers little incentive to conduct comprehensive

analysis. This second reason falls under a more general critique of the external validity of boundary

designs, as researchers must only rule out sorting and other potential confounders unique to the

setting of interest, trading off the license to make broader claims.

In this paper we present a simple theoretical framework and a wealth of evidence to under-

stand how boundaries cause Tiebout sorting and its empirical implications. Our approach begins

with a stylized model that illustrates how boundaries distort the location decisions of households,

which in turn distort the amenities supplied by private firms and the public goods provided by

local governments. The key empirical insight of the model is that these distortions will manifest

as discontinuities in the demographic and amenity bundle of neighborhoods and ultimately in

neighborhood prices. We then test for the existence of spatial discontinuities in the universe of all

publicly available variables from the US Census, analyzing the demographics of Block groups near

six very different types of boundaries: historical rail and highway networks, contemporary school

district boundaries and attendance zones, county lines, and ZIP code boundaries. Consistent with

predictions of the model, we find overwhelming evidence of discontinuities across a wide range of

variables and all types of boundaries.

Our model is a simple formalization of the insights of two seminal papers on sorting. Following

Hotelling (1929), we start from the notion that certain consumers wish to locate close to certain

producers in horizontally differentiated markets. We then incorporate Tiebout (1956) sorting

stemming from heterogeneity in public goods supplied across neighborhoods. The basic insight of

model is that households of a given type will cluster on the same side of a boundary that provides

proximity to their preferred private and public goods. A core prediction is that this clustering will

generate a discontinuity at the boundary; the endogenous responses of households, firms, and local
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governments create a feedback loop that amplify this discontinuity and hence the causal effects of

boundaries on local demographics and amenities. We show that the magnitude of this problem

for boundary designs depend on the timing of boundary placement (or treatment assignment to

each side) relative to the timing of the explanatory variable of interest. Boundary discontinuity

designs may be appropriate to identify the effects of variables that change (and are observed)

immediately after the placement (or deletion) of a new boundary. However, as the length of time

between boundary placement and the period in which the variable of interest is observed increases,

researchers will have to impose stronger and stronger identifying assumptions that are increasingly

at odds with the empirical evidence that we present.

Following our model, the econometric framework to test for Tiebout sorting at boundaries

simply involves the estimation of a boundary discontinuity design.. We implement this test with

a dataset comprised of detailed maps of the six aforementioned boundaries throughout the con-

tiguous US and all variables in all Census Block Groups in the US in 2010 and 2020. The average

Block Group contains 1395 residents, and there are over 1700 Census variables that describe their

demographic characteristics along with features of the housing stock, labor market profiles, and

measures of government assistance take-up. Each block group is assigned to a nearby boundary

based on distance, and each census variable is taken as an outcome of the model, separately for

each boundary type. All types of neighborhood characteristics systematically vary discontinuously

at all types of boundaries, with the largest effects found at school zones, where 81% of chracteristics

vary discontinuously, and railroad tracks, where 75% of chracteristics vary discontinuously. We

also find robust evidence of Tiebout sorting at zip code (63%) and school district (61%) bound-

aries, and weaker evidence at highway (51%) and county lines (17%). We conduct a series of

tests on placebo boundaries to show that our results are not simply statistical artifacts of a high

dimensional testing procedure. Additionally, we show that our results are robust to a series of

specification tests for sensitivity to bandwidth selection and RD polynomial choice.

These findings have critical implications for a broader class of strategies to identify causal

effects with boundaries. Studies that seek to identify the effects of boundaries per se, will suc-

cessfully identify the effects of boundaries on outcomes that are mediated through a broad set of
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sorting mechanisms. For example, when boundaries shape historic institutions, the effects may

persist today through a variety of channels (Dell (2010); Dell et al. (2018); Cox et al. (2022)).

However, when the object of interest is a single attribute that changed historically at a boundary,

researchers must soften causal claims regarding contemporary outcomes, even if the data pass pre-

period balance tests. Such is the case of property rights (Baragwanath and Bayi (2020)), redlining

(Aaronson et al. (2020)), and residential segregation (Monarrez and Schönholzer (2023); Whaley

(2024)).

A second strategy involves spatial difference-in-differences assessment of a well-defined policy

assigned to one side of an administrative boundary, as with place-based investments (Lu et al.

(2019); Albertus (2020); Jia et al. (2021)).5 Our results suggest that this approach will capture

both the intended policy effect plus the knock-on effects of sorting. This implies that stable

differences in neighborhoods prior to the treatment (supporting, say, a parallel trends assumption)

may not be sufficient to rule out spatial spillovers that affect outcomes of interest after the policy is

in place. This is in line with Jardim et al. (2024), who argue that geographically diffuse spillovers

of a minimum wage enacted on one side of a boundary affect wages and working hours on the

opposite side, which contaminates the estimated impacts of the policy itself. This is not to say

that boundary designs are always problematic; indeed, their use can be appropriate to estimate

the effect of a single factor when the outcomes of interest are measured soon after boundaries are

established (or altered), or soon after a policy is put into place.

The remainder of this paper is organized as follows. In Section 2, we present a simple model of

consumer location decisions, and we characterize how they are affected by physical and adminis-

trative boundaries. In Section 3, we present our empirical approach to estimate discontinuities in

a large set of variables with no a priori spatial ordering, and describe the various sources of data

that we use to implement this approach. In Section 4 we present our results with an application to

house prices at school attendance boundaries that highlights our opposition to treating boundaries

with a narrow scope. We find that house prices increase 25-33% on the high quality side of a school

zone, a substantially larger estimate than the house price capitalization of school quality alone,

and far more indicative of the magnitude and consequences of Tiebout sorting over schools. We
5Our discussion of spatial difference-in-differences includes spatial differences-in-discontinuies (Butts (2023))
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conclude in Section 5.

2 Conceptual Framework

We motivate how boundaries generate discontinuities in households’ location choices in a simple,

illustrative model. Boundaries are modeled as either physical distortions that increase the distance

between points on opposite sides of the boundary, or mechanisms that allow for different levels

of public goods to be supplied (or both). For simplicity, we assume that these boundaries are

exogenously located along with two producers who are exogenously located at points 0 < y0 ≤

y1 < 1 on the unit interval, and a unit mass of consumers, indexed by i, who endogenously locate

at points xi ∈ [0, 1]. There is also a public good that is supplied exogenously at a level of g.

Let dji = |xi − yj| be the distance between consumer i and producer j. Then consumer i’s

utility is given by

U (xi) = αiu
(
d0i
)
+ (1− αi)u

(
d1i
)
+ v (g) (1)

where the parameter αi is drawn from a single peaked distribution over (0, 1). We assume that

u′ < 0 and u′′ > 0. That is, αi represents consumer i’s relative preference for producer 0 to producer

1, and all consumers prefer locating closer to producers (with a diminishing loss in marginal utility

in distance to producers). We also assume that v′ > 0.

Consumer i chooses xi to maximize the objective in equation (1). The first order condition

implies
αi

(1− αi)

u′ (d0i )

u′ (d1i )
= 1 (2)

in equilibrium. This has a familiar interpretation, as the left-hand side of equation (2) is the

marginal rate of substitution between the two producers. The right-hand side of the equation

corresponds to the price ratio if we understand distances to producers to be effective prices since

− ∂d1i
∂xi/

∂d0i
∂xi

= 1. No consumer will ever locate outside of the interval [y0, y1], as they would be strictly

better off moving into the interval. Hence, we can illustrate the spatial equilibrium in the top

panel of Figure 1.

We now introduce an exogenous boundary at some point B ∈ (y0, y1). A basic characteristic
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Figure 1: Spatial Equilibrium

0 1y⋆0 y⋆1

f ⋆
X

(a) Equilibrium Without Boundary

B0 1y⋆0 y⋆1

f ⋆
X

(b) Equilibrium With Physical Boundary

B0 1y⋆0 y⋆1

f ⋆
X

(c) Equilibrium With Administrative Boundary

Notes: Panel A illustrates the distribution of optimal consumer location choices f ⋆
X , given hetero-

geneous preferences over distance to producers y⋆0 and y⋆1. Panel B and C illustrate predictions
from a model of consumer behavior when a boundary occurs at point B, relative to the initial
distribution shown by the dotted line.
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of many boundaries such as highways or rivers is that they distort the physical environment. We

capture this by modeling the distance between any two points on opposite sides of B increased by

β ≥ 0. Consumer i’s first order condition is now

αi

(1− αi)

u′ (d0i )

u′ (d1i + β)
= 1 xi < B (3)

αi

(1− αi)

u′ (d0i + β)

u′ (d1i )
= 1 xi > B (4)

All consumers with x⋆
i < B before the introduction of the boundary remain to the left of the

boundary and vice versa. The distortion has the effect of shifting the mass of consumers away

from the boundary with a greater shift for those consumers who are located farthest from the

boundary. We illustrate this in panel (b) of Figure 1. In general, physical boundaries generate

discontinuities in the locations of consumers.

A second characteristic of many boundaries such as school zones or political borders is that they

allow for public goods to be differentiated.6 We model this by specifying g (x) = g0 at all points

x ≤ B and g (x) = g1 at all points x > B where g0 < g1 without loss of generality. This has the

effect of shifting a mass of consumers just to the left of B across the boundary. We illustrate the

effects of an administrative boundary on spatial equilibrium in panel (c) of Figure 1. In general,

administrative boundaries also generate discontinuities in the locations of consumers. Of course,

many boundaries are both physical and administrative. For example, political boundaries may

coincide with rivers or school district boundaries may coincide with roadways. This does not affect

the qualitative conclusions of our analysis. Moreover, these conclusions will persist and likely

strengthen if we endogenized the locations of boundaries or producers or if we endogenized the

levels of public goods since this would increase incentives for sorting.

If consumers belonged to different demographic groups and these groups had systematically

different tastes for the producers (the distributions of αi differed across groups) or different tastes

for public goods (v (·) differed across groups) then this simple analysis would yield further insights.

Because boundaries would generate discontinuities in the locations of both groups of consumers,
6To simplify notation, we assume consumers exactly at the boundary can choose the side of the boundary to

which they locate.
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then we would generically observe discontinuities in demographic compositions across boundaries.

Moreover, if producers adjusted their outputs to cater to their clientele, then this would imply

discontinuities in the amenities supplied across boundaries. Similarly, to the extent that govern-

ments respond to the preferences of their constituencies, then this would imply discontinuities in

the public goods supplied across boundaries. Finally, as amenities and public goods are capitalized

into home prices, this may affect the demographics of new consumers.

We summarize how each of these mechanisms contributes to the positive feedback loops shown

in the following diagram:

Demographics

��

++Boundaries

Disc.
66

Disc. ))

Home Prices

jj

rrAmenities

33

BB

Boundaries generate discontinuities in demographics and amenities. Demographics and ameni-

ties are then co-determined with home prices through the sorting of households (consumers) and

adjustments made by the suppliers of private amenities (producers) and public amenities (govern-

ments). Even if this sorting process is entirely continuous, the ultimate effect of a boundary on

the urban landscape will be discontinuous in the characteristics of residents, characteristics of the

amenity bundle, and prices.

We use another diagram to illustrate how this sorting process affects identification of causal

effects of either boundaries or neighborhood characteristics affected by them. Consider a boundary

that is placed at period t0, with x⃗ representing a vector of neighborhood characteristics – both

observed and potentially unobserved – in periods t1, t2, . . . , tT .7 Solid arrows indicate continuous

causal relationships, and dotted arrows indicate discontinuous causal relationships. Suppose x1

is a variable that the boundary is intended to directly influence (e.g., a local tax rate for an

administrative boundary). Then we would expect a discontinuity in x1 on either side of the

boundary. While it is possible that the boundary might be correlated to other neighborhood
7In principle, t0 could equal t1 .
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characteristics, it need not generate a discontinuity in those characteristics. However, the sorting

of people, firms and amenities in periods t1 and thereafter imply dynamic linkages between the

variables x1, . . . , xN . Nevertheless, a researcher could estimate the causal effect of an observed x1
t1

on any observed variable xn
ti

, n = 1 . . . N , i > 1 using a boundary discontinuity design, as any

discontinuity in xn
ti

at the boundary could only be due to x1
t1
.
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//
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//

��

��
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t2

//

��

��

. . . //

��

��

x1
tT

x2
t1

//

??

��

x2
t2

//

??

��
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// xN
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Suppose, however, that x1 could only be observed starting in period t2. We would then re-draw

this diagram as

Boundaryt0
//

((

��

x1
t2

//

��

��

. . . //

��

��

x1
tT

x2
t2

//

??

��

. . . //

??

��

x2
tT

. . . . . . . . .

xN
t2

II

FF

// . . .

II

EE

// xN
tT

(5)

Note that the relationship between the boundary in t0 and all variables in t2 is discontinuous since

these effects are mediated, at least in part, through the unobserved x1
t1
. In this setting, a boundary

discontinuity design would not be valid framework to identify the causal effect of x1 on any future

variables.

To mitigate this issue, the period in which the boundary first appears (t0) and the period at

which the explanatory variable of interest x1 is first observed, should be as close to each other as

possible in time in order to minimizes the scope for endogenous sorting of households and suppliers

of amenities to generate discontinuities in confounding variables. For instance, Jia et al. (2021)
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compare economic activity at the border of two Chinese provinces immediately after one is granted

more public sector autonomy, and find evidence for positive effects of pro-growth policies. Alterna-

tively, when the outcome of interest is observed at any point in the future, a boundary discontinuity

design will identify the total effect of x1
t1

on that outcome mediated through all channels, provided

the boundary itself does not generate immediate discontinuities in other confounding neighborhood

characteristics. Similarly, in a seminal paper in the literature on persistence, Dell (2010) identifies

contemporary changes at historic boundaries after restricting the sample to boundary segments

where institutional differences are negligible at t0. In great detail, Dell (2010) steps through all

potential mediating factors to establish a causal path of forced indentured servitude on economic

outcomes in Peru centuries later but, insightfully, never fails to attribute this effect to the boundary

itself as opposed to any single mediating factor.

3 Empirical Approach

3.1 Local Linear Regression Model

To test for these predicted discontinuities, we propose a scalable approach to estimate discon-

tinuous boundary effects on a large set of variables. We observe a boundary network (e.g., the

interstate highway network) as a series of curves in space, and we observe characteristics (e.g.,

population demographics or house prices) at a set of discrete points in space, which, in an abuse

of nomenclature, we refer to as neighborhoods. We index neighborhoods with j.

Standard approaches to estimate boundary effects require researchers to know which side of

a boundary is treated and which side of a boundary is untreated. These approaches then can

then identify treatment effects in a regression discontinuity framework where the running variable

is distance to boundary (untreated neighborhoods are usually assigned negative distances, and

treated neighborhoods are usually assigned positive distances). In our setting, we do not have a

priori treated and untreated sides of boundaries; our goal is simply to identify discontinuities and

estimate their magnitudes. Moreover, we seek to estimate these effects on vast, highly intersecting

boundary networks that span the entire United States. For these reasons, we must modify the
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standard approach.

First, for a given boundary network, we divide all boundaries into small, equal length pieces.

We denote these as boundary segments indexed by b. For each boundary segment, we consider

a set of nearby neighborhoods denoted as Jb. We locate the nearest neighborhoods in Jb on

either side of the boundary and refer to them as index neighborhoods. For each neighborhood

characteristic C, boundary segment b, and neighborhood j ∈ Jb, we construct a dummy HCbj = 1

for all neighborhoods that are on the same side of the boundary as the index neighborhood with

a higher value of C (i.e., the “high side”) and HCbj = 0 otherwise.

For each j ∈ Jb on the high side, we define dCbj to be the distance from j to the boundary, and

for each j on the low side, we define dbj to be −1 times the distance from j to the boundary. We

then estimate the following regression:

Cbj = δCHCbj + f− (dCbj)× 1 (dCbj < 0) + f+ (dCbj)× 1 (dCbj > 0) + ϵCbj (6)

where f−(·) and f+ (·) are flexible functions of the distance to the boundary and ϵCbj is an error

term. The parameter δC corresponds to the boundary effect for characteristic C. Under the

assumption that the unobservable determinants of Cbj vary continuously at the dCbj = 0 threshold,

δC will be identified and can be estimated by least squares. We implement the discontinuity model

with bandwidth selection procedures formalized by Imbens and Kalyanaraman (2012), Calonico

et al. (2014), and Calonico et al. (2017).

Placebo Validation Exercise

We consider the following placebo exercise to validate our empirical strategy. To simulate placebo

boundaries, we shift every neighborhood in a boundary segment by 0.5 miles to the left or right in

the two dimensional boundary space with the direction of the shift determined randomly. That is,

we reshuffle the position of each neighborhood j ∈ Jb by ξCb = {−0.5, 0.5} with equal probability.

For each characteristic C we estimate the placebo regression

Cbj = δpCHCbj+fp
− (dCbj + ξCb)×1 (dCbj + ξCb < 0)+fp

+ (dCbj + ξCb)×1 (dCbj + ξCb > 0)+ϵpCbj (7)
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which can be understood as an analog to equation (6) in which the location of each boundary

segment has been randomly assigned across the map containing neighborhoods j ∈ Jb. If our

identifying assumption is satisfied, then we would expect our estimate of δpC to be zero.

3.2 Data

To estimate the boundary discontinuities δC , we construct a dataset that is comprised of Census

Block groups geospatially merged to nearby boundaries. Latitude and longitude estimates for

the center of population of each Block group is provided by the National Historical Geographic

Information System (NHGIS), and we use ARCGIS software to map population centers to 2 mile

segments of each boundary type. The rich set of publicly available data at the Census Block group

level allows us to describe the area near each boundary segment along more than one thousand

dimensions. We describe both the boundary network data and neighborhood variables in further

detail.

3.2.1 Boundary Networks

We analyze three types of boundaries: transportation networks, educational boundaries, and ad-

ministrative boundaries. Transportation networks form physical boundaries as they deform the

urban landscape,are costly to cross, and often delineate distinct neighborhoods. We consider his-

torical rail and highway networks. The US railway network peaked at 254,000 miles of track in

the early twentieth century, and today it is comprised of approximately 160,500 miles of track.8

We measure the historical US rail network using the Atack (2013) historic GIS transportation

database created from the New Century Atlas maps published in 1911. This includes all passenger

and freight rail lines that were in operation circa 2011. The Interstate Highway System stretches

nearly 50,000 and is part of a larger network that includes state highways. For the analysis we

employ a digitized map of only interstate highways made publicly available by the US Department

of Transportation as of 2020.9

8American Association of Railroads, Chronology of America’s Freight Railroads.
https://www.aar.org/chronology-of-americas-freight-railroads/.

9Our analysis omits segments of interstate < 0.5 mile long. Additionally, state managed highways are not present
in the shape file.
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School district and school attendance zone boundaries are constructed using shapefiles provided

by NHGIS. The National Center for Education Statistics (NCES) conducts an annual update of

school district boundaries dating back to 1995, and we obtain boundaries from the 2020 update.

Unlike school districts, there is scant nationally representative spatial data for school attendance

zones. NHGIS hosts the 2009-2010 shapefiles created by the NSF funded SABINS project. The

analysis of school attendance boundaries is restricted to elementary schools, which are defined as

those enrolling third grade students (and none above ninth grade). Because the best available data

for US school boundaries are from the 2009-2010 school year, we estimate this model with Census

Block group data from 2010.

We also consider administrative boundaries in the form of 2020 county lines and ZIP code

boundaries. A large share of county boundaries exist in remote areas with few nearby Block

groups, however, our sample is restricted to boundary segments with descriptive Census data on

both sides. Such a restriction results in smaller samples for county line regressions, despite the

near 100% geographic coverage. ZIP code shapefiles also have extensive geographic coverage, but

they contrast with county lines in that the data restriction is far less binding.

3.2.2 Sample Description

We provide summary statistics of our data in Appendix Table 1, where we compare selected

neighborhood characteristics in each boundary network. All Block groups are within one mile of

each boundary type, with the sample restricted to boundaries with at least two block groups on

either side. For five of the six boundaries we use Block group data from the 2020 Decennial Census

and the 2016-2020 American Community Survey (ACS). For school zones we use 2010 Decennial

Census Block group data. For 2020, there are over 1,700 variables characterizing the people,

housing, and amenities for each Block group in the sample contiguous 48 states (with over 2,000

for 2010). Tens of millions of people live within a mile of our sample boundaries with the most being

near railroads (98.7 million) and the least living near county lines (25.9 million). On average, Block

group population means range from 1,674 to 1,859 compared to a population average of 1,776.The

variation in home values and income across boundary types reflect the exclusion of boundaries
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in rural areas that do not meet the sampling restriction. Incomes for the sample ($77,768) are

relatively higher than US national averages ($67,521) at the time.

Table 1: Block Group Summary Statistics

Variables Full Data Railroad Highway School District School Zone County Line ZIP Code

Home Value 304,807.22 298,811.16 340,305.52 329,255.35 307,648.80 340,140.41 331,725.58
(249299.8) (257542.2) (275536.2) (263742.7) (211625.8) (266735.6) (271314.8)

Income 77,768.43 74,642.87 79,372.11 85,446.41 74,813.60 87,853.63 81,567.33
(40300.6) (39464.3) (40816.8) (42854.5) (38145.6) (43871.7) (41879.6)

Share White 0.60 0.59 0.53 0.61 0.62 0.63 0.58
(0.302) (0.305) (0.305) (0.300) (0.298) (0.291) (0.304)

Share Latino 0.19 0.19 0.21 0.17 0.18 0.14 0.19

(0.235) (0.239) (0.245) (0.227) (0.227) (0.180) (0.237)

Share Black 0.12 0.12 0.14 0.11 0.13 0.13 0.12
(0.201) (0.207) (0.217) (0.194) (0.213) (0.219) (0.201)

Rooms / Unit 5.82 5.65 5.61 5.97 5.78 6.01 5.85
(1.374) (1.316) (1.399) (1.471) (1.272) (1.562) (1.447)

Age of Housing 52.96 55.73 56.00 60.05 35.33 60.69 59.06
(159.1) (143.3) (152.9) (184.4) (17.98) (190.6) (181.3)

Observations 65639 56815 39875 33685 35604 14266 45765
Notes: Means and standard deviations (in parentheses) for the full sample of Census Block groups that lie within
1 mile of any boundary (column (2)), and the six subsamples of Block groups for each corresponding boundary
network.) Because school zone boundaries reflect the 2009-2010 school year, Census data for this column come from
the 2010 Census. For all other boundaries the data are from the 2020 census. Income and home value measures
displayed are in 2020 dollars.

4 Results

4.1 Tiebout Sorting By Boundary Type

Our primary empirical exercise in this paper is to estimate the share of Census variables that

exhibit statistically significant discontinuities, and the average magnitude of the identified changes

for each boundary type. In order to facilitate comparison of these estimates across neighborhood

characteristics and boundary types, we normalize the standard deviation of all dependent variables

to 1. Table 2 highlights the fact that a substantial share of neighborhood characteristics vary at

all types of boundaries we study, consistent with widespread Tiebout sorting.

We rank the results in Panel A of Table 2 by the fraction of statistically significant effects col-

umn (1). For each boundary type the fraction is substantially greater than 5%, with neighborhoods
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Table 2: Summary of Results

Frac. Significant Effects Avg. Significant Effect Size
All Vars. Selected Vars. All Vars. Selected Vars.

(1) (2) (3) (4)

Panel A: Actual Boundaries
School Attendance Zone 0.810 0.841 0.403 0.406
Railroad 0.756 0.783 0.264 0.270
Zip Code 0.635 0.683 0.219 0.219
School District 0.610 0.643 0.262 0.304
Highway 0.508 0.531 0.307 0.311
County 0.167 0.178 0.471 0.499
Panel B: Placebo Boundaries
School Attendance Zone 0.040 0.036 0.086 0.075
Railroad 0.046 0.045 -0.012 -0.007
Zip Code 0.048 0.048 -0.001 0.006
School District 0.050 0.050 -0.045 -0.019
Highway 0.053 0.047 -0.037 -0.003
County 0.039 0.043 -0.027 -0.025

Notes: In columns (1) and (3), we present statistics for δ̂C for the entire sample of neighbor-
hood characteristics. In columns (2) and (4), we present statistics for δ̂C for the subsample of
non-negative neighborhood characteristics that have fewer than 10% missing observations and no
extreme outliers. Each row summarizes the results of independent regressions taking each Cen-
sus descriptive variable as an outcome, grouped by the particular boundary used in each set of
regressions. Statistical significance is reported at the 95% level.

varying at remarkably high rates given the large number of characteristics we test. We report that

81% of characteristics change discontinuously at school attendance zone boundaries, followed by

76% at railroad tracks, 64% at ZIP code boundaries, and 61% at school district boundaries. High-

ways have less of an influence than railroads, but affect over 50% of neighborhood characteristics.

The weakest prevalence of boundary effects occur at county lines, and in Appendix Awe provide

further analysis of the boundary geography and location, which in part explain heterogeneity in

the estimated effects.

Column (3) compares the average estimated effect size for statistically significant variables

at each boundary type. The average magnitude ranges from 0.22 to 0.48 standard deviations

from the mean. The larger discontinuities that we find for school zones reflect greater household

sorting across school zones than other boundary types. Interestingly, county lines yield the fewest

significant effects but the largest average effect size. This may indicate that when a discontinuity
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exists at a county boundary, it tends to be large. To ensure that these results are not driven by a

large number of Census variables being uninformative, in columns (2) and (4) we consider only a

subset of variables for which fewer than 10% of observations are missing, all entries are numeric,

no observations accidentally take on negative values, and no variables contain extreme outliers (a

coefficient of variation over 2000). This eliminates roughly 20% of all neighborhood characteristics

from our analysis. Nevertheless, we find a similar prevalence and size of significant effects as we

did in the unrestricted sample of columns.

The results of our placebo tests are summarized in Panel B of Table 2. All entries in columns

(1) and (2) are close to 5%, which is what we would expect when considering significance at the

95% level. Meanwhile, columns (3) and (4) shows that even the few statistically significant placebo

effects that we do find are not economically significant. To further support our identification of

widespread boundary effects, we break down the distributions of estimates (including placebo

estimates), and present sensitivity tests for RD bandwidth and polynomial choices in Appendix B.

4.2 Undetected Tiebout Sorting in Small Samples

Our finding of robust, widespread boundary discontinuities invites caution to practitioners seek-

ing to implement regression discontinuity designs and other approaches that exploit geographical

boundaries for identification. In the case of boundary or geographic discontinuity designs, re-

searchers seek to estimate the effect of a treatment on an outcome Cbj in which treated units j lie

to one side of a boundary b (HCbj > 0) and untreated units lie to the other side of that boundary

(HCbj < 0). The central identifying assumption in such a design is that the average treatment

effect should be continuous as we approach the boundary from either side (Keele and Titiunik

(2015)). A common test of this assumption is to demonstrate that other potential confounders

C ′
bj that are observed by the researcher do not vary discontinuously at the boundary with the

implication being that any discontinuity that is estimated at the boundary can then be attributed

to treatment. We discuss interpretation of estimates obtained by using this research design and

other boundary methods that rely on similar assumptions about the data generating process.

Internal validity in boundary discontinuity designs may stem from the focus on a single city,

16



metropolitan area or even state. We speculate that balance tests of discontinuities in neighborhood

characteristics are likely to be under-powered in such settings. To support this, we replicate our

main analysis separately for 9 large Core-based statistical areas (CBSA) in the United States

using school attendance areas as boundaries and summarize our results in Table 3. School zones

are where we find the most prevalent effects, and we select these 9 CBSAs because they have

the largest share of total Census population residing within school attendance zones available in

the GIS data. In this sense, these results should be seen as conservative since they are the most

statistically powered subsamples. While the estimated effect sizes for each CBSA are similar to

those of the nation as a whole, the precision of these estimates is dramatically smaller. Instead of

finding statistically significant discontinuities in over 80% of neighborhood characteristics, we find

statistically significant discontinuities in only 10-25% of neighborhood characteristics depending

on city.

Table 3: School Attendance Zone Boundary Discontinuities by City

(1) (2)
City (CBSA) Observations Fraction of

Statistically
Significant Effects

(All)

Fraction of
Statistically

Significant Effects,
Selected Variables

All US (Pooled) 53966 0.810 0.841
Miami 2203 0.101 0.109
Philadelphia 1598 0.088 0.087
Minneapolis 1371 0.228 0.237
Houston 1344 0.223 0.234
Tampa 1141 0.184 0.188
Atlanta 1104 0.371 0.397
Riverside 1010 0.287 0.288
Washington, DC 958 0.163 0.163
Denver 855 0.118 0.102

Notes: In column (1) we present statistics for δ̂C for the entire sample of neighborhood characteris-
tics, and in column (2) we present statistics for δ̂C for the subsample of non-negative neighborhood
characteristics that have fewer than 10% missing observations and no extreme outliers. Selected
cities are chosen based on data coverage, ie the share of MSA population residing in a school zone
available in GIS shapefiles. Sample cities are sorted in the table by total number of observations.
Statistical significance is reported at the 95% level.

The results in Table 3 suggest researchers should be cautious using covariate balance tests to

validate boundary research designs. This also applies to dynamic applications that require similarly
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strict assumptions as standard panel data models. Difference-in-discontinuities, for example, is

amendable to pre-existing differences in covariate levels so long as changes in treated and control

units are parallel (Grembi et al. (2016); Butts (2023). However, the proximity of treated and

control units to the same boundary creates potential for contamination. Any sorting that occurs

during the treatment window, because of pre-existing differences in neighborhood characteristics,

will lead to false conclusions about parallel trends and in turn, bias estimates for treatment effects.

The upshot is that in settings with small pre-existing differences, researchers can make a case

for minimal short-run sorting concerns. However, in the periods following policy dictated by a

boundary (or establishment of a new administrative boundary), sorting changes the composition

of both treated and control neighborhoods. Further, the effect is increasing in the magnitude of the

policy change, posing a substantive threat to boundary designs (Jardim et al. (2024)). Our results

imply the potential for false conclusions regarding the presence of potential sorting confounders.

4.3 Applications: House prices, Schools, and Segregation

The Tiebout sorting we find at attendance boundaries is consistent with the idea that schools fa-

cilitate residential segregation across broader housing markets (Reardon (2016); Monarrez (2023)).

Cutler et al. (1999) and many others point to house prices, which capitalize amenities like neigh-

borhood race and income composition, as a reinforcing mechanism for segregation. In that vein,

we turn the analysis to Census home values at school attendance boundaries to estimate the price

of the entire bundle of amenities near high quality schools. In doing so we broaden the literature

with equity implications beyond traditional hedonic estimates of school quality in the US (Black

(1999); Bayer et al. (2007)) and the UK (Gibbons et al. (2013)). It is the full housing cost premium

for access to the school quality, social networks, and neighborhood amenities that amplifies the

inequality of decentralized racism predicted by Cutler et al. (1999).

Table 4 presents results from the model taking Census home values as the outcome of our school

zone boundary discontinuity. In the upper panel of column (1) we estimate the difference in price

level to be $53,211 for the sample including all block groups within the optimal bandwidth 0.44

miles from a school zone boundary. Moving from left to right in the table we assess the potential for
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overlapping boundaries by excluding settings where the school boundary overlaps with a district,

railroad, or highway segment. The largest effects are found where school zones do not overlap

with any other boundary, and the pattern of the results is consistent with our headline findings of

weaker Tiebout effects in settings where highways are present. Removing those boundaries from

the sample in columns 4 and 5 increases the discontinuity by over $15,000 relative to column (1).

Table 4: Hedonic Estimates at School Zone Boundaries

All No District Effect No RR Effect No HWY Effect No Effects 2-4

(1) (2) (3) (4) (5)
Price Level
Estimate 53211.4* 48953.9 57567.3* 68503.9** 69223.3*
SE (23059.2) (26184.0) (27918.4) (25421.7) (33840.9)
Log(Price)
Estimate 0.264** 0.251* 0.256* 0.329*** 0.329*
SE (0.0894) (0.0993) (0.106) (0.0983) (0.128)
Boundary Fixed Effects
Estimate 0.104*** 0.0895*** 0.107*** 0.105*** 0.105**
SE (0.0241) (0.0268) (0.0299) (0.0273) (0.0350)
N 14223 9954 9395 10558 5704
Bandwidth (Miles) 0.44 0.44 0.44 0.44 0.44
RD Polynomial 3 3 3 3 3

We take the natural log of house prices and report the results in the middle panel of Table 4,

which illustrates a discontinuity ranging from 25-33%. This figure approximates the percentage

increase in full on board housing costs to reside on the higher quality side of the school boundary,

reflecting house price capitalization of the full slate of Tiebout sorting effects in Table 2. Naturally,

the result is markedly larger than estimates for the capitalization of test-scores alone.10

Testing for the effects of overlapping boundaries like railroads, highways, or even rivers is

a sensitivity check for the influence of fixed characteristics in the urban space. The potential

for bias in this large confounder is evidenced by 5704/14223 = 40% of block groups near school

zones considered unexposed to other boundaries. In the bottom panel, we present results using

boundary fixed effects that account for the presence of local confounders common to both sides of
10Hedonic estimates of school quality begin with Black (1999) findings of a WTP of 2.5 percent for a 5 percent

increase in test scores. Bayer et al. (2007)estimates a much smaller WTP, less than 1 percent, for a 5 percent
increases in school performance. Dhar and Ross (2012) similarly test for the capitalization of school district quality,
finding a 10% increase in house prices for a one standard deviation increase in district test scores.
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a given boundary. Consistent with Dhar and Ross (2012), the inclusion of boundary fixed effects

absorbs a substantial portion of the identifying variation, yielding more consistent estimates across

samples. However, this potentially interesting variation may better explain the lack of integration

of higher mobility neighborhoods. If the price premium shown in the upper two panels of Table 4

is prohibitive, it is no wonder why endogenous household location choices have little responsibility

for the decline in US segregation today (Caetano and Maheshri (2023a)).

5 Conclusion

Physical structures, both natural and man-made, distort the urban landscape. So too do admin-

istrative boundaries that allow for the differentiation of public goods. In this paper, we present

a simple model that yields the prediction that these distortions will manifest as discontinuities in

neighborhood characteristics across boundaries of many types. We then show that a comprehen-

sive set of neighborhood characteristics – the universe of publicly available characteristics in the

decennial Census – exhibit discontinuities at a broad set of physical, educational and administra-

tive boundaries. These discontinuities are sizable, systematic, and not merely statistical artifacts

of how spatial data are collected.

Given these findings, we argue that the popular boundary discontinuity design should be ap-

plied with caution as its core identifying assumption may not hold in certain settings, and a

standard validation exercise of this assumption is, in practice, probably under-powered to draw a

meaningful conclusion. This yields an insight that should be taken to heart by both policymakers

and researchers. Although the short-run effects of boundaries may be narrow, the long-run effects

of boundaries are likely to be broad in scope, even if the treatment induced by the boundary is very

narrow. Shifting a school attendance boundary has the scope to affect far more than educational

outcomes; adding a highway will affect neighborhoods in far more profound ways than changing

traffic patterns; past institutional boundaries such as redlines that are no longer in effect may still

generate dramatic discontinuities in the present day. Policymakers would be wise to consider these

knock-on effects when assessing if and where to place boundaries. And researcher should perhaps

trade-off the hope of using boundaries for the sharp identification of narrow treatment effects for
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the prospect of using boundaries to explain a broader set of spatial phenomena.

As an illustrative example we unpack the price house price capitalization of Tiebout sorting at

school attendance boundaries, and find discrete price changes close to five times the magnitude of

estimates for the capitalization of school quality alone. The large price differential reflects broad

changes in the bundle of amenities, including school quality and social networks that influence

long-run labor market outcomes. While school quality equalization is worthwhile to pursue, the

sorting we find along a number of different margins (at various boundary types) suggests that such

a policy addresses only a portion of location choices that influence lifetime outcomes.
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Online Appendix

A Data and Sampling

The approach to constructing our data is the same for each of the six boundaries. Original source

data shapefiles are loaded into ArcGIS, and each boundary is cut into segments at maximum two

miles in length. Block groups are assigned to nearby boundary segments using the latitude and

longitude coordinates of each Block group population center. For each boundary type, we allow

Block groups to be assigned to multiple boundary segments. Although Block groups are discrete

points across space, the data proxy for a continuous distribution of amenities near each boundary.

In that sense, a single Block group that is 0.75 miles from one boundary and 0.1 miles from another

can provide valuable information about each. The sample is restricted to Block groups less than

a mile from a boundary, and boundary segments must have data on both sides to be included.

A.1 Physical Boundaries

The data for railroad and highway networks is comprehensive and covers the entire United States.

The sum total of railroad mileage is greater than highway mileage, and the arrangement of both

networks may differ in urban and rural areas. As an example, Figure 2 contains a comparison of

railroad and highway coverage in a large urban area (Atlanta, GA) and a suburan/rural county

(Anderson, SC) in the same region. Evident from the upper panel are transportation networks

serving as major arteries in the city structure, with substantial clustering of neighborhoods near

both railroads and highways. Economic activity in rural areas is more likely to be clustered near

railroads, as shown in the the lower panel of Figure 2.
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Figure 2: Railroads and Highways

(a) Urban Transportation Networks (Atlanta, GA)

(b) Rural Transportation Networks (Anderson, SC)

Notes: In each panel, the left Figure includes only railroad lines, while the right Figure includes
both railroad and highway lines. Railroad lines are colored solid black and highway lines are
outlined in grey.

A.2 School Boundaries

There is an extensive body of research on the formation and consequences of school boundaries.

There is substantial heterogeneity in the political economy behind how school district and atten-

dance zone boundaries are drawn by state. For the two school boundary types, we try to use the

broadest definition possible. The school district sample includes unified districts that do not solely

serve charter schools. School attendance zones in the sample include those that contain third grade

students and are intended to have open enrollment. Open enrollment school zones allow students

with the catchment area to choose from two or more schools that share the same boundary.
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School district maps can vary substantially by state, and are a classic example of variation

in the political economy that has historically shaped school districts. On one extreme are school

districts drawn synonomously with county lines, covering large spatial areas and governed by a

single school board. Such design is prominent is southern states. By contrast, other counties are

fragmented with smaller school districts each managed by an independent school board. In the

latter case school district lines may coincide with municipal boundaries at a lower geography than

the county. As an example, Figure 3 contains two counties (shaded areas) with similar populations

in 2020. On the left is Mecklenberg County, population 1.13 million, in which Charlotte is center

city. On the right is Cuyahoga County, population 1.23 million, where Cleveland is the center city.

As of 2020, Cuyahoga county is served by over 25 school districts.

Figure 3: School District Heterogeneity

(a) Charlotte, Mecklenburg County, NC
(1 District)

(b) Cleveland, Cuyahoga County, OH
(25+ Districts)

Notes: Mecklenburg County, NC (4.1) has a population of 1.13 million in 2020, in comparison
to the 1.23 million residents of Cuyahoga County, OH (4.2). The upper panel illustrates the
single unified Charlotte-Mecklenburg school district in contrast to the many districts serving the
Cleveland-Cuyahoga County area.

A.3 Administrative Boundaries

Data for county lines and ZIP codes cover nearly entire lower 48 geographic area. As Figure 4 shows,

counties have broader administrative geography with boundary sections in both urban and remote

areas. There are over 3,000 US counties, and across county lines are predicted changes in tax rates

levied on property and sales, municipal service quality, and school quality. There is substantial
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heterogeneity in county population sizes, with the average US county being approximately 100,000

people.

Figure 4: Example: Greater Miami MSA

(a) County Lines (b) ZIP Codes

Notes: Census Block group locations are overlaid with spatial data for county lines and ZIP code
boundaries in the Greater Miami metropolitan area, including Dade, Broward, and Palm Beach
counties.

As of the 2020 census there are 41,500 zip codes containing an average 8,340 people in each. As

shown in the second panel of Figure 4, the spatial correlation between ZIP code density and

population density combined with a contiguous ZIP code map yields a substantially larger

analysis sample of ZIP code boundaries. The primary purpose of ZIP codes is to delineate federal

postal routes, in theory an otherwise meaningless distinction that in practice is used to facilitate

other locally provided services. Public school catchments, police and fire precincts, county lines

and other municipal boundaries have the potential to overlap with ZIP codes to produce

statistically significant amenity differentials in our analysis.

A.4 Real and Placebo Boundaries

The location choice of residents and the endogenous production of heterogeneous neighborhood

amenities tie the data describing block group population centers to boundary segments in the

28



spatial data. It is the location choices, not the endogeneity of amenities and neighborhood de-

mographics, that result in the observed boundary effects. If the statistical correlation between

neighborhood amenities remained constant but the location of neighborhoods were randomly as-

signed, there would be a much weaker boundary effect, particularly for physical boundaries.

To implement our placebo test, we map neighborhoods to the same boundary segment but

randomize the position of population centers relative to the threshold. In doing so we preserve

the statistical correlation between neighborhood amenities to simulate a world absent the specific

type of spatial segregation that generates boundary effects. Alternatively, if consumers (producers)

have within-neighborhood preferences for proximity to a specific producer (consumer) type, but

are indifferent about the characteristics of nearby neighborhoods, boundaries will have no effect

on the spatial distribution of amenities.

B Supplementary Analysis

B.1 Supplement : Main Results

For each boundary type, we present histograms of all estimated boundary effects in Figure 5

overlaid with histograms of those effects that are significant at the 95% level. In order to facilitate

comparison across estimates, we normalize the standard deviation of all dependent variables to 1.

For the two physical boundaries, railroads and highways, all statistically significant boundary

effects are positive, which supports our selection procedure for HCbj (the “high side”). Moreover, the

vast majority of economically significant effects (defined as δ̂C > 0.05) are statistically significant.

The range of effects for highways and railroads is similar, though railroad effects tend to be slightly

larger than highway effects.

For the two educational boundaries, we estimate even larger effects than for the physical bound-

aries. Once again, all statistically significant boundary effects are positive, and the vast majority

of economically significant effects are statistically significant. We estimate fewer statistically sig-

nificant effects at county boundaries, but a substantial fraction of statistically significant effects

at ZIP code boundaries. This is likely due to the fact that the majority of county borders are in
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rural areas that offer fewer observations for estimation, a drawback that does not apply to ZIP

code boundaries.

Figure 5: Boundary Effects

(a) Railroads

0
10

20
30

40
Fr

eq
ue

nc
y

-.2 0 .2 .4 .6
Estimated Boundary Effect

All Effects Statistically Significant Effects

(b) Highways

0
10

20
30

40
50

Fr
eq

ue
nc

y
-.2 0 .2 .4 .6

Estimated Boundary Effect

All Effects Statistically Significant Effects

m

(c) School Districts

0
10

20
30

40
Fr

eq
ue

nc
y

-.2 0 .2 .4 .6
Estimated Boundary Effect

All Effects Statistically Significant Effects

(d) School Attendance Zones
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Note: Statistical significance is determined at the 95% level. Each histogram contains the frequency
of statistically significant and insignificant effects arranged by the magnitude of the boundary
effect (x-axis). For comparison across estimates, the standard deviation of all dependent variables
is normalized to 1.

In order to ensure that our results are not simply a statistical artifact of our estimation and
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testing procedure, we reproduce these histograms using estimated effects from our placebo vali-

dation exercise in Figure 6. Three observations are immediate for all boundary types: (1) The

overwhelming majority of placebo effects are not statistically significantly different than zero. (2)

The distributions of placebo effects are roughly symmetric around zero.11 (3) The magnitudes of

estimated placebo effects are substantially smaller than the magnitudes of the estimated boundary

effects. All three observations strongly support our identification strategy.
11The slight skew to the right is likely due to our selection procedure for the “high side.”
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Figure 6: Placebo Boundary Effects
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Note: Statistical significance is determined at the 95% level. Each histogram contains the frequency
of statistically significant and insignificant effects arranged by the magnitude of the boundary
effect (x-axis). For comparison across estimates, the standard deviation of all dependent variables
is normalized to 1.Detailed description of the placebo boundary exercise is in Section 3.

In this section we stress test the results for robustness to specification choices in the boundary

discontinuity design. We focus on school attendance zones, which produce the most widespread

amenity effects in our analysis and have been a focus in the literature for quite some time. In a
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setting where house prices capitalize changes in school quality and endogenous amenities at the

boundary, bandwidth selection involves choosing the distance from the boundary used to restrict

the estimation sample. Further, modeling the change in prices relative to distance to the boundary

involves choosing the order of polynomial used to fit the regression. Through this analysis we

illustrate how results of boundary - hedonic price regressions are sensitive to research design, and

discuss the limitations of causal claims in the absence of high frequency data for both prices and

amenities.

B.2 Sensitivity Analysis

As standard with regression discontinuity designs we stress test our results across two specification

margins: the choice of RD polynomial and bandwidth. Section B.2.1 presents results modeling

each outcome as a linear function of distance to the boundary (as opposed to the cubic polynomial

functional form in the main results). Section B.2.2 contains a table that shows our results are

robust to ad hoc choices of bandwidth around each threshold.

B.2.1 Polynomial Choice

Table 5: Summary of Results

Frac. Significant Effects Avg. Significant Effect Size
All Vars. Selected Vars. All Vars. Selected Vars.

(1) (2) (3) (4)

Panel A: Actual Boundaries
School Attendance Zone 0.902 0.948 0.339 0.359
Railroad 0.829 0.871 0.194 0.209
Zip Code 0.752 0.793 0.144 0.151
School District 0.721 0.754 0.191 0.203
Highway 0.609 0.656 0.158 0.165
County 0.278 0.289 0.135 0.148

Notes: In columns (1) and (3), we present statistics for δ̂C for the entire sample of neighbor-
hood characteristics. In columns (2) and (4), we present statistics for δ̂C for the subsample of
non-negative neighborhood characteristics that have fewer than 10% missing observations and no
extreme outliers. Each row summarizes the results of independent regressions taking each Cen-
sus descriptive variable as an outcome, grouped by the particular boundary used in each set of
regressions. Statistical significance is reported at the 95% level.
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B.2.2 Distance Bandwidth

As in traditional RD settings, the primary hurdle in spatial RD design is determination of the

bandwidth, defined by the distance from the boundary on either side that determines which data

points to be included in the estimation sample. A common practice is to repeatedly estimate the

sharp RD model, reducing the sample each iteration by shrinking the bandwidth. We follow Imbens

and Kalyanaraman (2012) bandwidth selection process that minimizes an empirical approximation

of the mean squared error. Using the Calonico et al. (2017) RDRobust package implements Imbens

and Kalyanaraman (2012) optimal bandwidth selection for each regression outcome in the main

analysis.

Table 6: Summary of Results

Frac. Significant Effects Avg. Significant Effect Size
All Vars. Selected Vars. All Vars. Selected Vars.

(1) (2) (3) (4)

Panel A: 1 Mile Bandwidth
School Attendance Zone 0.896 0.942 0.325 0.343
Railroad 0.812 0.849 0.186 0.194
Zip Code 0.744 0.781 0.140 0.148
School District 0.712 0.745 0.184 0.191
Highway 0.606 0.634 0.136 0.311
County 0.191 0.196 0.114 0.119
Panel B: 0.5 Mile Bandwidth
School Attendance Zone 0.040 0.036 0.086 0.075
Railroad 0.046 0.045 -0.012 -0.007
Zip Code 0.048 0.048 -0.001 0.006
School District 0.050 0.050 -0.045 -0.019
Highway 0.053 0.047 -0.037 -0.003
County 0.039 0.043 -0.027 -0.025

Notes: In columns (1) and (3), we present statistics for δ̂C for the entire sample of neighbor-
hood characteristics. In columns (2) and (4), we present statistics for δ̂C for the subsample of
non-negative neighborhood characteristics that have fewer than 10% missing observations and no
extreme outliers. Each row summarizes the results of independent regressions taking each Cen-
sus descriptive variable as an outcome, grouped by the particular boundary used in each set of
regressions. Statistical significance is reported at the 95% level.
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B.3 Supplement : Hedonic Regressions and Boundary Fixed Effects

Figure 7 includes raw data scatter plots of census block group home prices for owner-occupied

housing. Prices are displayed in logs on the y-axis, and the x-axis arranges block groups by

distance to the boundary. For each boundary segment, the median house price is computed for

each side, and block groups on the higher income side take positive values. Each panel includes

identical underlying data but vary by the polynomial degree chosen for the line of best fit. In a

sharp RD design, the point estimate is the difference between two regression functions evaluated

at the boundary, represented by the vertical difference the two fit lines. Comparing the panels

illustrates how the potential for misspecification if non-linearities in the house price gradient go

unmodeled.

Figure 7: Mean Home Values by Distance to the Boundary, 2010 Census
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Notes: Scatterplots of raw data for Census Block groups arranged by distance to a school at-
tendance zone boundary. Each Figure varies only by the polynomial selected to model the local
regression on each side of the boundary. Point estimates in a hedonic model of prices are computed
as the vertical distance between the two regression lines as they intersect the boundary.

Non-parametric estimation of house price changes at school boundaries captures the general

equilibrium effect of better quality schools, neighborhood demographics that change with school

35



quality, and other amenities correlated with neighborhood demographics. This contrasts with

using school boundaries and house prices to estimate household valuation of school quality while

conditioning on demographic and amenity differences. On one hand, it is important to know the

value that households place on educational investments. On the other hand, the overall general

equilibrium effect is informative as to the amount households must pay to access better quality

schools. In places without open enrollment, i.e. school attendance zones are binding, households

must be willing to pay for both higher school quality and the bundle of neighborhood demographics

and amenities that accompany better schools.

Better educated families with higher incomes may sort into high quality school zones for a

variety of reasons. Thus, the demand for housing near high quality schools also reflects the fact

that better educated neighbors with higher incomes are positive neighborhood amenities, and other

amenities near such neighbors are also likely to be of higher quality. Households choosing where

to live may find these neighborhoods desirable over and above the quality of their schools. Our

results in the main body of the paper suggest that households must be willing to pay for both the

higher school quality and the price capitalization of other amenities. Column 2 of Table 7 shows

that the average premium is approximately 26%, or $51,000 as shown in Column 5.

Boundary fixed effects are a way to de-mean house prices in block groups relative to neighbors

in the same boundary segment. In a hedonic model this approach compares residual variation

in prices to residual variation in an observable neighborhood characteristic to obtain a hedonic

valuation of that particular amenity. Incorporating boundary fixed effects into a local linear RD

involves two stages : regressing house prices on a set of indicators for each boundary segment,

then fitting the RD model with residuals from the first stage. Estimates for the hedonic RD with

boundary fixed effects are found in columns 3 and 6 of Table 7.

36



Table 7: Hedonic Estimates at School Zone Boundaries

(1) Log (2) Log (3) Log (4) Level (5) Level (6) Level
Boundary Effect 0.206*** 0.264** 0.104*** 45870.6*** 51117.0* 26528.9***
SE (0.0399) (0.0894) (0.0241) (11180.5) (23106.1) (6896.2)
N 14482 14482 14223 14074 14074 13767
Polynomial 1 3 3 1 3 3
Controls None None Boundary FE None None Boundary FE

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 8: Hedonic Estimates at School Zone Boundaries

Outcome: Log(Price) All No District Effect No RR Effect No HWY Effect No Effects 2-4

Sharp RD (1) (2) (3) (4) (5)
Estimate 53211.4* 48953.9 57567.3* 68503.9\** 69223.3*
SE (23059.2) (26184.0) (27918.4) (25421.7) (33840.9)

Boundary Fixed Effects RD (6) (7) (8) (9) (10)
Estimate 27309.2*** 25429.3*** 34503.7*** 29258.2*** 34296.9***
SE (6835.9) (7664.5) (8585.0) (7595.4) (9863.1)
N 14223 9954 9395 10558 5704
Polynomial 3 3 3 3 3
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