
 

AI AT THE WHEEL:  

THE EFFECTIVENESS OF ADVANCED DRIVER-ASSISTANCE 

 SYSTEMS AND ITS IMPLICATIONS FOR POLICY 

 

 

 

 

 

 

 

 

    Vikram Maheshri              Clifford Winston                  Yidi Wu             
                  University of Houston        Brookings Institution       Georgetown University 1     
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1. Introduction 

Since Ford Motor Company mass produced the Model T more than a century ago, the US 

automobile industry has gradually introduced notable vehicle safety improvements including 

headlights, automatic windshield wipers, shatterproof glass, improved braking, advances in body 

structure, collapsible steering columns, and occupant safety devices. Government policies also 

have sought to improve automobile safety by requiring motorists to have a valid driver’s license, 

prohibiting driving under the influence of alcohol or drugs, setting and enforcing speed limits, and 

requiring vehicles to satisfy National Highway Traffic Safety Administration (NHTSA) safety 

standards.2 

Beginning in the late 2000s, automakers took an important step forward to improve safety 

by steadily equipping their vehicles with advanced driver-assistance systems (ADAS) based on 

artificial intelligence.  ADAS consists of a suite of safety features that assist in both the forward 

dimension (automatic emergency braking and adaptive cruise control), and the lateral dimension 

(lane departure warning and blind spot collision prevention).3  ADAS is standard for some vehicle 

makes, models, and trims, can be purchased as an option for other makes, models, and trims, and 

is unavailable for purchase at this time for the remaining makes, models, and trims.4  According 

to the American Automobile Association, at least one ADAS feature was available in 92.7% of 

new vehicle models in the United States in 2018.5 

ADAS distinguishes itself from other automobile safety features because it assists the 

driver by making its own decisions in response to safety threats in real highway travel settings; for 

example, it may brake automatically to avoid a collision. Other safety features, such as airbags, 

enhance safety by reducing the severity of an injury if an accident occurs, but ADAS enhances 

safety by substituting for a driver’s attention to prevent an accident from occurring.  

The recent adoption of ADAS in the US motivates our interest in assessing its effectiveness 

at reducing accident risk. As appropriate for assessing the performance of a new technology, we 

account for the people who select the technology as well as for how they use it in practice because 

those choices can reinforce or compromise the intended effects of the technology. In contrast, an 

 
2 Government highway expenditures also have been used to improve the safety of the road system.  
3 Except for adaptive cruise control, ADAS features engage autonomously because they are often enabled by default. 
4 In addition to safety technology, a vehicle’s trim includes powertrain options, aesthetic features, and comfort 
amenities 
5 https://www.electronicdesign.com/markets/automotive/article/21126132/how-technology-is-driving-the-
democratization-of-adas  

https://www.electronicdesign.com/markets/automotive/article/21126132/how-technology-is-driving-the-democratization-of-adas
https://www.electronicdesign.com/markets/automotive/article/21126132/how-technology-is-driving-the-democratization-of-adas
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engineering analysis, which is the basis for current estimates of the effectiveness of ADAS, does 

not account for the potential bias of motorists who self-select into vehicles equipped with ADAS 

nor motorists’ potential behavioral responses of driving more aggressively in ADAS equipped 

vehicles.  

To date, ADAS has been voluntarily installed in certain vehicles by automakers and 

selected by motorists through their choice of vehicle and trim. But recently, the federal government  

issued one of the most significant changes to car safety standards in years by requiring that all new 

passenger cars and light trucks be equipped with automatic emergency braking (AEB) systems, an 

important component of ADAS. Automakers have until the fall of 2029 to ensure that the AEB 

systems on their 2030 vehicles comply with federal safety standards.6  

A long line of research, however, has questioned both the justification for and effectiveness 

of government intervention in motorists’ adoption of automobile safety features because 

consumers’ voluntary adoption of vehicles with new safety devices may be producing significant 

safety improvements without the costs of government intervention. Those costs include some 

motorists being required to pay higher vehicle purchase prices that exceed their valuations of the 

benefits of the safety devices and some motorists offsetting the benefits of government mandating 

the adoption of automobile safety features by driving more aggressively.7   

Thus, our assessment is further motivated by policymakers’ apparent dissatisfaction with 

the progress of motorists’ adoption of ADAS in their vehicle choices as shown by their mandating 

the adoption of AEB systems in all new 2030 vehicles. We discuss the various cost-benefit and 

 
6 Under the rule, all new vehicles would be required to have a version of automatic emergency braking that is “much 
more effective at much higher speeds.”  Specifically, all cars would need to be able to stop and avoid contact with a 
vehicle in front of them when traveling up to 62mph; vehicles traveling as fast as 45mph would need to come to a 
complete stop to avoid hitting pedestrians; and braking systems would be required to detect pedestrians and cyclists 
at night.  https://www.nhtsa.gov/sites/nhtsa.gov/files/2024-04/final-rule-automatic-emergency-braking-systems-light-
vehicles_web-version.pdf Currently, no commercially available automatic emergency braking technologies satisfy 
these stringent technical requirements.    
7 As an example of motorists choosing to avoid the cost of government intervention in automobile safety, Thaler and 
Rosen (1976) and Mannering and Winston (1987) found that although federal law in 1968 required seat belts to be 
installed in all vehicles except buses, many motorists did not wear them based on a rational cost-benefit assessment 
of the time and bother costs to fasten seat belts and their effect on reducing the probability of a fatal accident. As an 
example of offsetting behavior, Peltzman (1975) argued that even when seat belts were fastened, motorists reduced 
their technological effectiveness by speeding, thereby maintaining their exposure to accident risk. Winston, Maheshri, 
and Mannering (2006) found that motorists’ increase in risky driving behavior appeared to offset the technological 
effectiveness of airbags.     
 

https://www.nhtsa.gov/sites/nhtsa.gov/files/2024-04/final-rule-automatic-emergency-braking-systems-light-vehicles_web-version.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/2024-04/final-rule-automatic-emergency-braking-systems-light-vehicles_web-version.pdf
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equity considerations that should guide the government’s decision whether to mandate AEB 

systems and provide suggestive evidence on their magnitudes.   

As noted, the availability of ADAS varies at the model year-make-model-trim level. Thus, 

to execute our analysis, we aggregate data on accidents and driving to this level, which allows us 

to assess the effectiveness of ADAS by comparing the safety performance of extremely similar 

vehicles with and without ADAS. To the best of our knowledge, our paper is the first to use modern 

data collection methods to extract the detailed data that is necessary to conduct a trim-level analysis 

of automobile safety.  

Generally, our approach stands in contrast to the vast empirical safety literature that 

conducts analyses at the incident level in an attempt to identify the determinants of automobile 

accidents (for example, Haghani and Bliemer (2023) and Anderson and Auffhammer (2014)). By 

doing so, that literature is subject to selectivity bias because precisely who chooses to drive what 

vehicles at what specific times of day under which specific driver and driving conditions is unlikely 

to be random. Circumventing this bias requires, at a minimum, researchers to identify only 

treatment effects on accident severity conditional upon an accident occurring. However, a 

conditional analysis cannot account for accidents that have been prevented.8 In contrast, our 

approach enables us to identify the unconditional effectiveness of ADAS availability with an 

identification strategy that can address the various selection issues that arise. To implement this 

approach, we require information on the universe of vehicles on the road in a given geographical 

area, including those vehicles that have not been involved in accidents. 

We fulfill this information requirement by constructing a panel dataset comprised of all 

registered vehicles in Texas from 2010 to 2018. We link the dataset to a record of all accidents for 

which a police report was filed in Texas during this period, enabling us to construct the accident 

history of the universe of registered vehicles.9 Although we include the universe of vehicles 

registered in Texas, some of which get into accidents (and most of which do not), we exclude 

 
8 Some analyses of auto safety (for example, Edlin and Karaca‐Mandic (2006)) aggregate data by driver type to 
estimate the determinants of drivers who are involved in fatal and non-fatal accidents. However, because we are 
concerned with the effectiveness of a vehicle attribute, we aggregate our data by vehicle type.  
9 Texas takes all automobile accidents seriously. Even in a minor accident with no injuries, drivers who leave the scene 
of the accident without calling the police could be charged subsequently with a misdemeanor. State law mandates that 
drivers involved in an accident causing injury, death, or property damage exceeding $1,000 must report the incident 
to law enforcement.  
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vehicles not registered in Texas in our initial analysis because we do not observe out of state 

vehicles that are not involved in accidents.10  

Finally, we combine the vehicle accident histories with a panel dataset that we construct 

that identifies the availability of ADAS-related safety features on each trim of every vehicle that 

was registered during the sample period. The two data sources are merged via a specialized 

matching procedure using machine learning techniques that decodes the precise trim level of a 

vehicle from its Vehicle Identification Number (VIN). In sum, our data set consists of the universe 

of vehicles in Texas, including vehicles that have and have not been involved in accidents and 

vehicles that are equipped and not equipped with ADAS-related safety features. Our findings 

should be reasonably representative of the US as a whole because Texas is a large state with a 

diverse population and fleet of vehicles, which is driven in urban and rural environments that vary 

in  geography, weather, and density. 

Given this data set, we can meet the fundamental challenge of identifying the causal effect 

of a new technology on automobile safety—the adoption of the technology is generally non-

random—by exploiting the plausibly exogenous variation in the availability of ADAS on different 

vehicles over time. As the new technology (treatment) varies by vehicle, we compare the aggregate 

safety performance of vehicles with and without ADAS, as opposed to comparing the disaggregate 

safety performance of individual drivers. Using the latter approach, the effect of ADAS would be 

identified only under the questionable assumption that a driver’s propensity to purchase an ADAS-

equipped vehicle was uncorrelated to their attitudes toward safety and their driving abilities 

(perhaps conditional on some small set of observable driver characteristics).  

In our approach, we leverage the fact that ADAS became available at different times for 

different trim levels—notably within vehicles of the same make and model.11 We therefore identify 

the causal effect of ADAS on accidents under the weaker assumption that drivers did not 

systematically opt for higher trim level vehicles solely because of the availability of ADAS. Of 

course, drivers of higher trim vehicles are likely to differ from drivers of lower trim vehicles in 

some respects. However, vehicles of different trim levels vary in multiple dimensions by offering 

 
10 As part of our sensitivity analyses, we explore later how our results would be affected if we included both in-state 
and out of state vehicles in the accident data. As expected, our main findings are not affected because out of state 
vehicles account for a very small share of accidents in Texas.   
11 Wåhlberg and Dorn (2023) assess the effectiveness of vehicle electronic stability control (ESC) on fatal crash rates, 
but they do not compare cars’ safety performance with and without ESC. 



5 
 

dozens of appealing features, many of which are related to comfort and aesthetics and not to safety. 

This fact lends credence to our identifying assumption, which relies on a combination of the choice 

of higher trim versus lower trim and the timing of ADAS availability.  

We also recognize that the effects of self-selection in influencing the effectiveness of 

ADAS may be reflected in drivers’ risk preferences that are manifested in several ways. That is, 

those preferences may affect when drivers decide to adopt a vehicle with ADAS; whether and how 

they drive in different highway conditions; and whether and how they drive in different types of 

vehicles.  

Fortunately, data are available that enable us to test directly for systematic patterns related 

to drivers’ risk preferences that suggest whether they self-select into vehicles equipped with ADAS 

technologies.  We assembled a large sample of Texas households who owned vehicles and we 

obtained from Acxiom, a database marketing company, many of those households’ socioeconomic 

characteristics. We also collected data on the households’ vehicle safety records. Using these data, 

we provide evidence that the type of motorists who purchase vehicles with higher trim is not 

systematically affected by the availability of ADAS in higher trim vehicles. We also provide 

evidence that the evolution of the crash rate of drivers who never purchased ADAS equipped 

vehicles is similar to the evolution of the crash rate of drivers who eventually purchase ADAS 

equipped vehicles. Finally, we explore empirically the heterogeneous effects of ADAS across a 

wide range of vehicle characteristics, such as price and size, and highway travel conditions, such 

as clear weather, which are known to be positively correlated with the purchase and driving 

behavior of safer drivers. We provide evidence that the heterogenous effects of ADAS on accident 

outcomes do not vary systematically across vehicle and travel characteristics.  

Importantly, we find that ADAS is highly effective at improving automobile safety even 

after accounting for drivers’ behavioral responses to its availability and installation. Specifically, 

ADAS technologies reduce the risk of a motorist getting in any type of accident by 10 to 13 percent 

and reduce the risk of a motorist getting in a single vehicle fatal accident by roughly one third. 

ADAS has a small and statistically imprecise effect on reducing the risk of a motorist getting in a 

multivehicle fatal accident, but we suggest that ADAS is likely to reduce the fatality risk of those 

types of accidents as a greater share of the nation’s vehicle fleet is equipped with autonomous 

vehicle safety features.  Bear in mind that other safety features, such as airbags and seatbelts, do 

not reduce the probability that a driver will get in an accident. In this respect, ADAS represents a 
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significant advance in automobile safety by substituting effectively for a driver’s attention and by 

providing suggestive evidence that fully autonomous vehicles will dramatically improve highway 

transportation safety. 

Notwithstanding these economically significant benefits, we provide four reasons that 

collectively indicate that it is currently inadvisable for policymakers to mandate the installation of 

ADAS technologies in new vehicles. First, motorists are reasonably well-informed about the 

benefits of ADAS because, on average, the motorists who purchase vehicles with ADAS appear to 

be willing to pay for their significant installation costs. Second, access to ADAS is equitable and 

does not appear to be affected by supply-side distortions. Third, the mandate would force a sizeable 

share of motorists to incur considerable costs, on net, if their valuation of the improvements in 

safety attributable to ADAS were exceeded by ADAS installation costs. Of course, this point could 

be weakened in the future if the cost of installing ADAS falls significantly or if consumers’ 

perceived benefits of ADAS significantly increases. Finally, we conclude that the external benefits 

of ADAS, which amount to eliminating the social costs of multi-vehicle accidents that are 

prevented, are likely to be small.  

 

2. Estimating the Efficacy of ADAS 

The staggered rollout of the availability of ADAS over time and across different automobile 

makes, models and trims generates temporal and cross-sectional variation in registered vehicles’ 

safety features that enables us to identify the causal effect of ADAS on accident risk. We construct 

aggregate versions of the key variables, ADAS availability and accidents, to execute the empirical 

analysis, and then explain our specification to estimate the effect of ADAS availability on accident 

risk.  

ADAS Availability 

In most safety analyses, a vehicle type, which we index by 𝑖𝑖, is defined as a combination 

of make and model.  However, within a make-model combination in our analysis, some vehicles 

(e.g., luxury editions) may have ADAS and others (e.g., standard editions) may not.  We therefore 

expand the definition of vehicle type as a combination of make, model and trim, where trim levels, 

defined in the data section, are indexed separately by 𝑗𝑗.  

Crucial to our analysis is that the availability of ADAS for a given vehicle make and model 

may vary over time because it is not available in earlier model years of some vehicles, but it is 
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available in later model years.  Moreover, some vehicle makes and models may never have ADAS 

available during the sample period.  Let y index the model year of a given vehicle type.  Then, our 

treatment variable, the availability of ADAS, which we denote by the dummy variable 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦, varies 

at the model year y, make-model i, and trim level j. 

Accidents 

For each vehicle in each calendar year of our sample, we observe the vehicle’s model year, 

type (make-model), trim level, whether it was involved in an accident, and if so, the accident 

severity (ranging from property damage only to a fatal accident).  We denote by 𝑡𝑡 the calendar 

year, which will generally differ from the model year, of a specific year in a vehicle’s accident 

history.  Because we are interested in the effect of a treatment that occurs at the vehicle level, we 

aggregate accident outcomes to the model year-type-trim-calendar year level and denote by 𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

the total number of accidents of a given severity that vehicles 𝑦𝑦𝑖𝑖𝑗𝑗 had in year 𝑡𝑡.  

The temporal and cross-section variation in our panel is distinctive because it contains two 

different temporal dimensions: a vehicle’s model year 𝑦𝑦 and calendar year 𝑡𝑡.  Although the accident 

outcome varies over the calendar year dimension, the treatment varies only over the model year 

dimension 𝑦𝑦—older models of a vehicle type that were untreated remain untreated even if newer 

models of that type are treated.  Hence, a different treatment variable may be observed at a given 

𝑡𝑡 ≥ 𝑦𝑦. We exploit the variation in the treatment variable within vehicle type and across trim, model 

years and calendar years to identify the causal effect of ADAS on accidents. 

In table 1, we illustrate the organization of our data for a single vehicle type, the Acura 

MDX, using the calendar year as the primary temporal dimension for the 2000 to 2019 sample 

period.12  The Acura has three trim levels that we denote as Low (𝐿𝐿), Medium (𝑀𝑀), and High (𝐻𝐻), 

each associated with the period, if any, that they were equipped with ADAS.13  Vehicles with a low 

trim level were never equipped with ADAS during our sample period; vehicles with a medium 

 
12 Note the model year for vehicles manufactured up to June 2018 will be 2018, but the model year for any of the 
vehicles in our sample manufactured from July through December in each year (for example, 2015) can be advertised 
as the next model year.  Hence even though our sample period corresponds to 2010-2018, it includes some model year 
2019 vehicles. 
13 Manufacturers distinguish trims by a large number of features and frequently change the names of different trims 
for marketing purposes. For example, the 2018 Acura MDX was offered in 5 trim configurations that were marketed 
in three trim levels: Standard, Technology and Advance. Meanwhile, the 2015 Acura MDX was marketed in 4 trim 
levels: Base, Advance/Entertainment, Tech, and Tech/Entertainment. Because we are analyzing the effects of ADAS 
on safety and we wish to maintain a consistent treatment of makes and models over time, we aggregated all vehicles 
of a given make and model that introduced ADAS in the same model year as a single trim (in this case, Low, Medium 
or High). 
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trim level were equipped with ADAS in model year 2018 but not before that calendar year; and 

vehicles with a high trim level were equipped with ADAS in 2015 but not before that calendar 

year.  The three different trim levels of Acura MDX’s on the road during our sample period enable 

us to define the treated vehicles as Acura MDX’s with high and/or medium trim levels that include 

ADAS.  Our untreated or control vehicles are Acura MDX’s that do not include ADAS. We define 

all of the other treated vehicle types and control vehicles in our sample in the same way.  

Specification 

 Previous safety research (e.g., Maheshri and Winston (2024)) has specified vehicle 

accidents 𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 in a Poisson regression framework because accidents take on small, discrete, non-

negative values (Cameron and Trivedi (1998)). Although some empirical analyses in the 

transportation literature estimate accident equations using a negative binomial model, this is 

inadvisable because, as pointed out by Wooldridge (1999), the negative binomial estimator is a 

non-robust estimator of conditional mean parameters, and this weakness is exacerbated when using 

fixed effects.14 Negative binomial regressions may be appropriate if the objective is simply to 

maximize the fit of the model and there is overdispersion in the dependent variable. However, for 

causal inference where we are interested in a mean causal effect, the Poisson QMLE estimator 

discussed by Gourierieux et. al. (1984)  yields consistent estimates of the effect of interest without 

the distractions of variance assumptions. 

 We therefore specify our models of accidents and fatal accidents as:   

                                       𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜖𝜖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦� ,                            (1) 

where Syijt is a dummy variable equal to one if ADAS was available either as standard equipment 

or purchased through an optional package on vehicle 𝑦𝑦𝑖𝑖𝑗𝑗 in year 𝑡𝑡 and zero otherwise;  𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦  are 

make-model-trim-calendar year fixed effects; 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦 are make-model-model year-calendar year fixed 

effects; and 𝜖𝜖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 is an error term.15  

 
14 As Gourierieux et. al. (1984) show, the negative binomial estimator requires both mean and variance to be correctly 
specified, whereas the Poisson estimator only requires the mean to be correctly specified. Moreover, as  Wooldridge 
(1999) has noted, the negative binomial estimator only “pretends” to solve the problem of over- or under-dispersion 
of data, but this is only true if the variance is correctly specified; otherwise, misspecification bias will be inherited. 
Perhaps most critically for our application, negative binomial estimators suffer from the incidental parameters problem 
and also are scale dependent. 
15 Data on specific vehicles that were purchased with ADAS as an optional package are not available.  However, when 
a vehicle, defined by make and model, offers ADAS features as an option instead of as standard, most consumers who 
select that vehicle also are likely to purchase the optional ADAS features. The reason is that the entire trim package 
of a vehicle that offers optional ADAS features is usually more expensive than the entire trim package of the same or 
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The key identifying assumption that enables parameter β to be interpreted as the causal 

effect of the availability of ADAS on selected vehicles on the total number of accidents is that 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝜖𝜖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦|𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦, 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦� = 0. That is, motorists who purchase higher trim vehicles during the 

first model year that ADAS is made available in those vehicles are not systematically different 

from the motorists who purchase higher trim vehicles of other model years.  We provide several 

pieces of empirical evidence to support this assumption.  Based on early experiences with 

autonomous vehicles in controlled testing environments (Blanco, et. al.  (2016), Mosquet, 

Andersen, and Arora (2016)), we expect the availability of ADAS to reduce accidents. But as 

discussed in Maheshri and Winston (2025), the quantitative findings in controlled testing 

environments should be viewed with caution because they are likely to be inflated by using a non-

random sample of drivers.   

 

3. Data 

We constructed a data set consisting of all the registered vehicles in Texas from 2010 to 

2018 along with their trim, which we used to identify whether a given vehicle is equipped with 

ADAS. We used leading vehicle data aggregators that describe the available safety features in all 

new vehicle trims, including ADAS, to identify the vehicles equipped with ADAS during the 

sample period.16 Then, for each vehicle we merged information from the universe of Texas police 

accident reports to construct its detailed accident history. To the best of our knowledge, this is the 

first data set at the vehicle trim level that has been used to assess the efficacy of vehicle safety 

features. 

Extracting safety features from Vehicle Identification Numbers (VINs) and then 

aggregating vehicles to the trim level is a formidable task. It requires matching unstructured 

descriptive data from auto manufacturers to vehicle trims that are only partially identified by their 

VIN and then classifying vehicles into meaningful groupings of trims in a consistent manner. We 

decoded the VIN of every vehicle in our sample using a commercially available VIN decoder. The 

decoder identified each vehicle down to the trim level, which is critical for our analysis because 

 
similar vehicle that does not offer ADAS as an option. Thus, consumers who do not want the optional ADAS features 
would, in all likelihood, decide to reduce their costs by simply choosing a similar vehicle that does not contain a trim 
package that gives them the opportunity to purchase ADAS as an option. Anecdotal evidence obtained from car dealers 
was consistent with this characterization of consumer behavior.  
16 Vehicle data aggregators use automotive data aggregation platforms, which are centralized systems designed to 
collect, organize, and process data generated by vehicles within the automotive ecosystem. 
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different versions of the same vehicle make and model have different safety features.17 We then 

collected detailed information from data aggregators, such as TrueCar and MotorTrend, by 

scraping their websites and employing string manipulation techniques to verify the availability of 

ADAS for each vehicle. A more detailed description of how we extracted safety features from 

Vehicle Identification Numbers (VINs) and aggregated vehicles to the trim level is available in the 

Appendix A. In all, we constructed a panel of annual and fatal accidents from 2010 to 2018 for 

6,268 distinct vehicle types defined as a unique model year-make-model-trim combination.  

In Figure 1, we present the evolution of ADAS availability for vehicles in our sample 

during calendar years 2010-2018. Panel A shows that vehicle trims equipped with ADAS safety 

technology were relatively scarce for most of our sample period, though they gradually became 

more common after 2015. Indeed, Panel B shows that while the number of vehicles equipped with 

ADAS safety technology represents a small (less than 20%) share of all vehicles throughout our 

time period, newly registered vehicles are increasingly more likely to be equipped with ADAS 

towards the last few years of our sample period. This pattern reflects the fact that vehicles are 

infrequently purchased durable goods; hence, there is a considerable delay between the availability 

of a new safety innovation and its adoption by motorists. 

The introduction of ADAS could affect driving intensity, as measured by vehicle miles 

travelled (VMT), which could confound our findings on the safety effects of ADAS. To explore 

this possibility, we constructed a subsample from our main sample of vehicles that contained the 

VMT for each vehicle in the subsample. The information for a vehicle’s VMT was obtained from 

the Texas Commission on Environmental Quality (TCEQ).  The 14 largest counties in Texas 

require each vehicle to be subjected to emissions testing annually prior to being registered.  Among 

other information, TCEQ collects the VINs of the vehicles and the exact annual odometer readings 

for each registered vehicle in 14 counties, from which we are able to construct average annual 

measures of VMT for each vehicle type. 

Finally, we collected data to explore whether the availability of ADAS safety features led 

consumers to self-select systematically into ADAS-equipped and non-equipped trims. We obtained 

data from Acxiom for more than 200,000 randomly selected registered vehicle owners in Texas 

from our main sample containing information about their race, income, marital status, household 

 
17 Using the example in table 1, the Acura MDX high level trim is called the Type S Advance, which made ADAS 
available in model year 2015. The low level is the base trim, which has not made ADAS available. 
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size, and propensity to adopt new technologies. We use the data to construct the average 

demographic characteristics of owners of each vehicle type in our sample.  We then estimate 

whether those characteristics when interacted with the availability of ADAS features have distinct 

effects on accident outcomes, which could be interpreted as suggesting that consumers are self-

selecting into ADAS-equipped and non-equipped trims based on observed influences. 

In figure 2, we present a flow chart to summarize the sequence of the data collection and 

construction process, the variables collected, and the key summary statistics for the variables. We 

use the final data set for our estimations. As noted,  Appendix A provides a detailed description of 

the process of linking the data from the vehicle registrations, police accident reports, and trim level 

attributes to identify whether ADAS safety technology was available on each vehicle registered in 

Texas. 

 

4. Results 

Table 2 presents the effects of the availability of ADAS on all accidents and on fatal 

accidents as incidence risk ratios (IRRs) to facilitate interpretation of the estimates. An IRR greater 

than 1 corresponds to a positive effect on vehicle accidents, and an IRR less than 1 corresponds to 

a negative effect on vehicle accidents. We did not specify accident and fatality rates per vehicle 

mile of travel because the adoption of ADAS is likely to simultaneously influence VMT as well as 

accidents and fatalities. Even if one of those influences were small, it would still prevent us from 

determining the distinct effects of ADAS on accidents and fatalities.  However, we conduct 

sensitivity tests to assess the effect that the adoption of ADAS has on VMT.  

In each regression, we restrict our sample to model year-make-model-trim combinations 

with at least ten registered vehicles to ensure that the results are not affected by rare vehicles, such 

as Ferraris.18 We also restricted the sample to vehicle types that are equipped with ADAS at some 

point during the sample period to ensure that the results are not affected by variation among never 

treated vehicles; when we relaxed this assumption and included never treated vehicle types, our 

findings were unchanged. 

 

 

 
18 If we eliminate the assumption, our standard errors increase but the coefficients obtained with and without the 
assumption are not statistically indistinguishable  
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Basic Findings 

We show in table 2 that the availability of ADAS reduces the total number of accidents of 

a given vehicle and trim type by 13% in single vehicle accidents (column 1) and by 10% in 

multivehicle accidents (column 2), and the effects are statistically significant. Bear in mind that 

only a very small share of the entire vehicle fleet is equipped with autonomous vehicle safety 

features, so ADAS may be slightly less effective in reducing multivehicle compared with reducing 

single vehicle accidents because the other vehicle involved in a multivehicle accident is unlikely 

to be equipped with autonomous vehicle safety features. As more of the nation’s vehicle fleet is 

equipped with autonomous vehicle safety features, we speculate that ADAS will be equally 

effective in reducing single and multivehicle accidents.19  

ADAS technologies are even more effective at reducing single vehicle fatal accidents as   

their total number involving a given vehicle and trim type is reduced by roughly one third and the 

effect is statistically significant (column 3). For example, a lane departure warning could wake up 

a drowsy driver who is on the road by herself and prevent a fatal accident resulting from the driver 

running into a retaining wall or driving over an embankment at high speed.  Thus, the lane 

departure warning effectively substitutes for a driver’s attention by itself to prevent a fatal single 

vehicle accident.  

However, we find that ADAS technologies have a small and statistically insignificant effect 

on reducing multivehicle fatal accidents (column 4). As we discussed, the effectiveness of 

ADAS—or  our ability to identify its effectiveness—could be limited in preventing multivehicle 

fatal accidents because the other vehicle involved is unlikely to be equipped with autonomous 

vehicle safety features. Thus, we expect as more vehicles are equipped with autonomous vehicle 

safety features, ADAS will be more effective at reducing fatalities in multivehicle accidents.20  

As a check that our results are not caused by changes in driving intensity, we present the 

effects in Table 3 of ADAS availability on vehicle miles travelled. We are unable to obtain 

 
19 The introduction of more advanced autonomous driving technologies that allow for communication between 
vehicles may generate greater safety benefits for multivehicle accidents, but such technologies are not likely to be 
developed in the near future. 
20 Wooldridge (2023) proposes a method to estimate treatment heterogeneity by using a robust two way fixed effects 
estimator for a Poisson regression. We used his estimator here as a robustness test of our findings and obtained slightly 
larger but less precise average treatment effects of ADAS. The loss in statistical precision arises because the estimator 
proposed by Wooldridge is less efficient than the simpler estimator that we used here. In any case, our quantitative 
estimates of the effects of ADAS on automobile safety appear to be consistent with those obtained by using the more 
sophisticated estimator.    



13 
 

statistically significant effects, but based on the estimates in specification (2), we can rule out that 

the availability of ADAS technology will not reduce VMT by more than 4%, which implies that 

changes in VMT cannot explain the sizeable effects that ADAS availability has on all and fatal 

accidents.21  

Heterogeneity 

In Figure 3, we show the extent that the effects of ADAS on accidents vary in any 

systematic way with vehicle characteristics, which could have implications for consumers’ 

selective purchase behavior of vehicles when ADAS is available. Generally, we find little 

heterogeneity in the effects of ADAS in reducing accidents based on vehicle size, price, and 

manufacturer nationality, with the exception that its availability appears to be more effective in 

lighter than heavier vehicles. Because safer drivers tend to purchase larger, heavier, and more 

expensive vehicles, those findings are consistent with our maintained assumption that safer drivers 

do not systematically switch into safer vehicles. We find no systematic heterogeneity in the effects 

of ADAS technologies on fatal accidents.22  

The effectiveness of ADAS on accidents also may vary by driving behavior and conditions 

when an accident occurs. These findings also could reflect selectivity to the extent that more risky 

drivers tend to purchase vehicles with ADAS features because they are more likely than less risky 

drivers to drive more dangerously and to drive in more dangerous conditions. ADAS could 

therefore possibly offset risky drivers’ choices of how, when, and where to drive.  Figure 4 shows, 

however, that there is no evidence of heterogeneity in the effects of ADAS on all accidents by 

speed of crash, roadway type, roadway conditions, weather conditions, and day or week or time of 

day. If anything, ADAS appears to compress drivers’ risk profiles by sufficiently offsetting drivers’ 

choices that may increase accident risk.  Although we find some heterogeneity for accident 

conditions in our point estimates for fatal accidents, those differences are not statistically 

significant. 

 

 

 
21 For sensitivity purposes, we also explored whether any of the preceding findings were affected when we included 
both in-state and out of state vehicles in the accident data.  As we expected, none of our findings were materially 
affected because based on our data on total accidents in Texas, out of state vehicles account for only about 5% of all 
the vehicles.  
22 We are unable to estimate precise heterogeneous effects on ADAS on fatalities for many of the vehicle 
type/weight/MSRP/automaker categories, in all likelihood because of the infrequency of fatal accidents. 
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5. Potential Sources of Bias That Could Affect the Interpretation of Our Findings  

We have assessed important potential sources of bias to our estimates of the effects of 

ADAS technologies on motorists’ safety. We now explore in depth the three primary potential 

sources of bias to our estimates that could affect the interpretation of our finding that ADAS has 

significant effects on reducing all accidents and fatal accidents: selection bias, offsetting behavior, 

and contamination of the control group.   

Selection Bias 

We have stressed that drivers’ decisions to self-select into treatment—that is, drive a 

vehicle with ADAS safety features—is the main source of bias in our analysis because it would 

indicate that instead of being random, drivers’ adoption decisions may be strongly correlated with 

their safety preferences and behavior.  If, for example, safer drivers were systematically more 

likely to adopt ADAS than were riskier drivers, then our estimates of the effects of ADAS on 

automobile safety would be biased upwards. Conversely, our estimates of the effects of ADAS on 

automobile safety would be biased downward if riskier drivers were more likely to adopt ADAS 

than were safer drivers. The latter behavior would be more relevant in the case of a safety feature 

like ADAS that can compensate for a driver’s riskiness, instead of a safety feature like airbags that 

does not compensate for a driver’s riskiness but engages after a vehicle is involved in a collision.  

Either of these issues would constitute a failure of the parallel trends assumption underlying 

our identification strategy. We clarify how this is less of a concern by respecifying our empirical 

model of accidents given in equation (1) as:  

𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒�∑ 𝛽𝛽𝜏𝜏𝜏𝜏=−3,−1,1…4 × 1�𝑦𝑦�𝑦𝑦𝑦𝑦 − 𝑦𝑦 = 𝜏𝜏 − 1� + controls + 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜖𝜖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦�       (2)  

where  𝑦𝑦�𝑦𝑦𝑦𝑦 denotes the model year in which vehicle 𝑖𝑖𝑗𝑗 is first equipped with ADAS and 1(⋅) 

represents the indicator function. The coefficients 𝛽𝛽𝜏𝜏 correspond to the effect of ADAS in the 𝜏𝜏 

vehicles equipped with ADAS. Finally, we include 1�𝑦𝑦�𝑦𝑦𝑦𝑦 − 𝑦𝑦 < −3� and 1�𝑦𝑦�𝑦𝑦𝑦𝑦 − 𝑦𝑦 > 4� as 

controls to normalize all effects relative to the model year just prior to treatment (e.g., 2014 for the 

high trim Acura MDX available in 2015).  As before, we estimate the model using the sample of 

vehicles that were equipped with ADAS at some point during the sample period; we expect the 

IRR associated with 𝛽𝛽𝜏𝜏 for 𝜏𝜏 < 0 to be equal to 1 if our estimates did not suffer from self-selection, 

i.e., there should be no treatment effect in model years prior to treatment. 
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 We present regression results in an event-study style plot in figure 5 showing that the 

effectiveness of ADAS at reducing accidents and especially at reducing fatalities increases with 

the model years that ADAS technologies are available on higher trims.23  There are two potential 

explanations for this pattern: (1) ADAS reduces the prevalence of accidents by an amount that is 

quantitatively consistent with the parameter estimates in column 2 of table 2, which are based on 

our original specification in equation (1), or (2) drivers systematically switch to ADAS equipped 

trims only when they are made available, and they avoid higher level trims in earlier model years 

when ADAS was not available.  

We reject the second explanation because higher trim vehicles differ from their lower trim 

counterparts in a variety of important dimensions, not just in the availability of ADAS. Those 

dimensions include non-ADAS vehicle safety features, such as side curtain and seat mounted side 

impact airbags, as well as non-safety features, such as a premium leather collection.  In Appendix 

B, we report a complete list of the 15 non-ADAS and non-safety related trim features that were 

available for vehicles with high trim, but not for vehicles with low trim. The fact that trim choice 

is influenced by more than just the availability of ADAS lends credence to our first explanation 

that the pattern of results is credibly aligned with the estimates of the effect of ADAS on all 

accidents and fatal accidents. 

We also provide direct evidence against the claim that the findings are influenced by 

systematic self-selection of safer drivers into ADAS equipped vehicles by estimating the effect of 

ADAS availability on the demographic characteristics of adopting households.  We accomplish 

this by replacing the dependent variable in our main specification (equation (1)) with a new 

dependent variable to obtain: 

    𝑋𝑋𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝑋𝑋 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜖𝜖𝑦𝑦𝑦𝑦𝑦𝑦�,                                (3) 

where 𝑋𝑋𝑦𝑦𝑦𝑦𝑦𝑦 is a demographic characteristic of owners of vehicle yij.24 Recall that we obtained this 

variable from a survey by Acxiom, which was conducted for a given calendar year and did not 

 
23 We refer to the plot as “event-study style” because our data is organized along two time dimensions, calendar year 
and model year. Accordingly, a given make-model-trim vehicle will contribute different numbers of observations to 
the estimation of each effect shown in Figure 2. For instance, the 2014 Acura MDX contributes 5 observations to the 
estimation of the point with -1 model years because ADAS was available in the higher trim calendar years 2014-2018, 
but the 2016 Acura MDX contributes only 3 observations to the estimation of the point with +1 model years because 
ADAS was available in higher trim calendar years 2016-2018. 
24 We continue to estimate the specification using Poisson regression because the demographic variables are non-
negative with a small number of values.  Using Poisson regression in such instances has become common practice.  
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vary by calendar year. The parameter 𝛽𝛽𝑋𝑋 represents the effect of ADAS availability on an average 

demographic characteristic of owners. If, for example, drivers differentially sort into ADAS 

enabled vehicles because ADAS is newly  available, we would expect to find that our estimate of  

𝛽𝛽𝑋𝑋 would be statistically significantly different from zero because the adoption of ADAS was 

associated with drivers that had certain demographic characteristics.   

We present estimates of 𝛽𝛽𝑋𝑋 for a variety of household demographics in figure 6, which 

again suggests that drivers do not systematically select into ADAS equipped vehicles. Drivers who 

switch to ADAS equipped trims immediately after the availability of ADAS are slightly more 

likely to be male, educated, and married, but they are of similar age, from similar sized households, 

and earn similar incomes. Not surprisingly, these drivers have a higher propensity to own more 

vehicles and to adopt new technologies. To the extent that there are statistically significant 

differences between drivers who opt into higher trims when ADAS becomes available, the effects 

for virtually any characteristic are very small (less than a 5% change).25  In sum, the evidence 

bolsters our claim that the findings of ADAS’s efficacy in improving safety cannot be explained 

by selection. 

Finally, Figure 7 provides additional circumstantial evidence against the presence of 

selection bias by showing that over time the safest drivers did not disproportionately switch to 

vehicles equipped with ADAS when those safety features were first made available.  If this were 

the case, we would expect the earliest adopters of ADAS equipped vehicles to have fewer accidents 

(pre-adoption) than later adopters of ADAS vehicles (pre-adoption). However, the pre-adoption 

trends of the crash rates for all groups of drivers are roughly parallel and at similar levels. As we 

would expect, given the effectiveness of ADAS, the crash rate of drivers who never switched into 

ADAS equipped vehicles is somewhat higher than the crash rate of drivers who switched into 

ADAS equipped vehicles at some point during our sample period. 

 Offsetting Behavior 

A second potential source of bias to our estimates is that the adoption of ADAS might affect 

a driver’s behavior on the road.  For example, a driver with ADAS might take more risks while 

driving, like texting and paying less attention to traffic conditions, which would offset the safety 

 
25 The only exception is that Black drivers adopt ADAS equipped trims when they are first made available at close to 
a 20% change. But the fact that their response is not accompanied by any other demographic shift among all drivers 
strongly suggests that it is not correlated with the safety preferences of Black drivers only.  
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benefits of ADAS.  Alternatively, because ADAS features include auditory and visual warnings to 

drivers when other vehicles are approaching, ADAS may induce drivers to make a safety 

augmenting response.  In any case, given that our interest is to estimate the effect of ADAS on 

automobile safety in actual driving conditions instead of the controlled environments typically 

studied by engineers, it is appropriate for any change in drivers’ behavior in response to the 

adoption of ADAS to be incorporated in our estimates.  Our estimates of the heterogeneous effects 

of ADAS by vehicle characteristics, however, did not suggest that drivers’ risk preferences led 

them to systematically change their behavior in response to adopting ADAS.  

Contamination and Externalities 

 A final potential source of bias could be caused by contamination of the control group, 

which could occur because treated and untreated vehicles may periodically be involved in 

accidents with each other. Thus, any safety improvement in the treated vehicles, for example, due 

to the adoption of ADAS, also may improve the safety of untreated vehicles and cause an estimate 

of the effectiveness of ADAS safety features—or any other safety features—to be biased 

downward because it does not account for the positive spillover of safety accruing to vehicles that 

are not equipped with those safety features. 

All observational analyses of accident data that are generated when treated and untreated 

vehicles share the same roadways will be susceptible to contamination bias, but the bias is 

mitigated in our analysis for two reasons.  First, the vast majority of vehicles (new and used) on 

the road during our sample period did not have ADAS available as an option at the time of 

manufacture.26 Second, nearly 50% of the fatal accidents in our sample were single-vehicle 

accidents. 

Moreover, the potential for large externalities from ADAS adoption is significantly reduced 

because  the main contributor to the costs of automobile accidents is fatal accidents, while we  find 

ADAS to be effective only at reducing single vehicle fatal accidents, which has no scope for 

externalities. In Appendix C, we perform a suggestive quantitative exercise and find that the 

external benefits of ADAS are likely to be on the order of 10% of the direct benefits. Thus, even 

if we are underestimating the external benefits by half, we conclude they are of second order 

 
26 Slightly more than 25% of all the vehicle models in our sample have ADAS, while the share of the total number of 
vehicles on the road that have ADAS is much smaller.  
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importance at best and that the case that our estimates are significantly biased downward calls for 

much stronger evidentiary support 

 

6. Guidance for Mandating ADAS for New Vehicles  

As noted, the US federal government has mandated that automakers equip all new model 

year 2030 passenger cars and light trucks with automatic emergency braking (AEB) systems by 

2029. The European Union has already mandated that new and existing vehicles be equipped with 

AEB systems.  Policymakers in the US and in other countries may go further and mandate that all 

new and possibly existing vehicles be fully equipped with ADAS safety features. We can provide 

guidance on how to analyze whether such a mandate would be socially beneficial. 

There are three primary justifications for government to mandate that new vehicles be 

equipped with ADAS safety features. First, there is a large potential external benefit to people from 

ADAS, which reduces the divergence between the private and social costs of driving. Second, 

motorists tend to undervalue the safety benefits of ADAS and thus do not choose to include those 

safety features in their choices of vehicle makes, models, and trims. Their uninformed choices may 

make themselves and other people worse off. Third, access to ADAS safety features is inequitable 

because of supply-side distortions.  Those justifications must be assessed and even if they are 

found to be valid, they must be balanced against the costs borne by consumers who are forced to 

pay higher prices for ADAS-equipped vehicles but do not value the safety benefits from ADAS by 

as much as the price increase.  

We have found that ADAS is effective at improving automobile safety.  But we argue that 

the available evidence suggests that it is premature for policymakers to enact a mandate to require 

ADAS features to be installed in all new vehicles because we cannot conclude unambiguously that 

any of the preceding conditions to justify a mandate are met. At the same time, it does appear that 

a mandate would force consumers to incur nontrivial costs.  Of course, the available evidence and 

our caution against mandating ADAS are subject to revision as the public gains more experience 

with driving ADAS-equipped vehicles and as new evidence that pertains to the desirability of the 

government mandating the adoption of ADAS in new vehicles is accumulated.  

The External Benefits of ADAS 

Estimating the full external benefits of an automobile safety feature is a challenging 

empirical problem because it is difficult to determine whether a safety feature could have prevented 
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other people besides the driver from being injured or killed in an accident. To the best of our 

knowledge, estimates of such benefits are not available in the literature nor have policymakers 

offered conjectures about the magnitude of those benefits.  For example, NHTSA (2023b) assesses 

the societal impact of motor vehicle crashes but does not attempt to include any evidence on the 

external benefits of automobile safety features. Given NHTSA’s interest in improving automobile 

safety, it is notable that they do not even suggest that the external benefits of automobile safety 

benefits could be large. To further our analysis, we contend that the contextual evidence suggests 

that an estimate of the external benefits of ADAS would not significantly increase its large, 

estimated benefits.  

An implication of the fact that ADAS is a much stronger substitute for driver attention than 

other automobile safety features is that a large share of the overall benefits of ADAS is likely to 

be internalized by drivers.  Indeed, our rough estimate that the external safety benefits of ADAS 

are on the order of 8.3% of the internal safety benefits of ADAS corroborates that claim. We also 

stress that our estimates of the effects of ADAS on fatal accidents include fatal accidents involving 

non-ADAS equipped vehicles, pedestrians, and cyclists because the dependent variable in our 

analysis is measured as the probability of a fatal accident resulting in a fatality involving any 

vehicle, pedestrian, or cyclist. As noted, the external benefits from fewer fatalities associated with 

those forms of transportation are likely to be a small fraction of the internal benefits to drivers of 

ADAS equipped vehicles.  At the same time, the cost of fatal accidents greatly exceeds the cost of 

nonfatal accidents, so the external benefits of nonfatal accidents also are likely to be small. Finally, 

the scope of external benefits of ADAS is further limited because roughly one-third of all accidents 

and one-half of fatal accidents are single vehicle crashes while 5% of multivehicle accidents 

involve only vehicles that are equipped with ADAS.27  

Consumers’ Willingness to Pay for ADAS 

Consumers’ willingness to pay (WTP) for ADAS incorporates consumers’ value of 

reducing the probability of dying in a crash, sustaining an injury in a crash, and having to bear the 

cost of repairing or replacing a vehicle involved in a crash. It is possible for us to use our results 

to quantify the first effect to provide suggestive evidence that based on their WTP for ADAS to 

 
27 Other potential external benefits of ADAS may be difficult to assess because they intersect with broader policy 
issues. For example, ADAS could reduce congestion because there would be fewer incident delays but those delays 
could and should be addressed by government implementing efficient congestion pricing, which could encourage 
motorists to adopt new technologies, such as WAZE, that could improve traffic flows.   
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reduce the probability of dying in a crash, consumers are reasonably well-informed about the 

effectiveness of ADAS and do not underestimate its safety benefits. To do so, we provide a rough 

estimate of consumers’ WTP, which incorporates a plausible estimate of the value of life and the 

probability of a fatal crash and compare the estimated WTP with the cost of installing ADAS in a 

vehicle to determine if a market outcome is possible where consumers are willing to pay the cost 

of a safety technology whose benefits they accurately value. 

We are not aware of any estimate in the literature of consumers’ WTP for ADAS to reduce 

the probability of dying in a crash that we can use here. To obtain this WTP estimate requires one 

to collect a detailed data set to estimate a vehicle choice model that includes highly differentiated 

vehicle attributes down to the trim level. The data collection and estimation of such a vehicle 

choice model is beyond the scope of this paper and remains a topic for future research.  

As a constructive alternative, we present a back-of-the-envelope estimate of WTP to 

advance the discussion.  To begin, note that the probability of a person dying in a car crash during 

their lifetime is roughly 1.0%28, with roughly 53% of fatalities occurring in single-vehicle crashes. 

Because we found ADAS reduced the probability of dying in a single-vehicle accident, we will 

focus on those accidents.  If a person owns roughly six cars during their lifetime29, the probability 

of dying in one of those cars in a single-vehicle crash is 0.088%.  Based on our estimates in table 

2, the probability of dying in those cars in a single-vehicle accident is reduced by 32%, or becomes 

0.059%, if they are equipped with ADAS.  Finally, consistent with US Department of 

Transportation Guidelines during our sample period, assume the value of life for a person is $6 

million30, which implies that a person would be willing to pay $60,000 to reduce the probability 

of dying in a fatal car accident by 1%. Thus, on average, motorists should be willing to pay roughly 

$1,800 (i.e., $60,000 ∙ (0.088-0.059)) for ADAS to be installed in their vehicle. 

We also are not aware of any econometric estimates of the marginal cost of installing ADAS 

in a range of different vehicles.  However, industry evidence is available that suggests the average  

cost of installing basic ADAS features is $4,248.31 Recall, our estimate of motorists’ average WTP 

applies only to the lifesaving benefits of ADAS in single vehicle accidents and does not capture 

the two other significant benefits of ADAS, including reductions in the millions of annual injuries 

 
28 https://www.curcio-law.com/blog/odds-of-dying-in-a-car-crash/. 
29 https://www.usedvwaudi.com/blog/2017/11/16/how-many-cars-will-you-go-through-in-one-lifetime.  
30 https://www.theglobalist.com/the-cost-of-a-human-life-statistically-speaking/.  
31 https://www.sbdautomotive.com/post/collision-avoidance-saves-lives-vpp  

https://www.curcio-law.com/blog/odds-of-dying-in-a-car-crash/#:%7E:text=The%20chances%20of%20dying%20in%20a%20car%20crash%20vary%20based,are%20about%201%20in%20107
https://www.usedvwaudi.com/blog/2017/11/16/how-many-cars-will-you-go-through-in-one-lifetime#:%7E:text=Some%20popular%20car%20websites%20have,too%20little%20of%20a%20number
https://www.theglobalist.com/the-cost-of-a-human-life-statistically-speaking/#:%7E:text=As%20of%202011%2C%20the%20Environmental%20Protection%20Agency%20set,Department%20of%20Transportation%20figure%20was%20around%20%246%20million
https://www.sbdautomotive.com/post/collision-avoidance-saves-lives-vpp
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from non-fatal accidents, which can notably decrease a person’s productivity and quality of life, 

and reductions in vehicle repair or replacement costs, which can increase drivers’ insurance rates. 

Motorists’ inflated average WTP to account for those significant benefits would therefore greatly 

exceed $1,800 and would likely to be aligned with the $4248 average cost of installing basic ADAS 

features. Accordingly, we have cast credible doubt on the claim that a government mandate is 

justified on the grounds that motorists are not informed about the benefits of ADAS safety features. 

Alternative calculations of motorists’ average WTP, regardless of their relationship with 

average installation costs, underscore the fact that focusing on average WTP masks consumers’ 

heterogeneity. For instance, older drivers may value ADAS more than prime-age drivers. Provided 

that older drivers have access to ADAS technology, it is questionable whether prime-age drivers 

who don’t particularly value ADAS should be cross-subsidizing them. Importantly, it also masks 

automakers’ interest in catering to consumers’ evolving heterogeneous preferences for ADAS 

safety features by gradually increasing their availability on more vehicles and by pricing them in 

a manner that is consistent with their safety benefits, installation costs, and consumers’ WTP.  

Equity Considerations and Supply-Side Constraints 

The remaining justification for mandating the installation of ADAS for all automobiles and 

light trucks is that equitable access to them is limited by supply-side constraints. Specifically, at a 

cost of nearly $5,000, ADAS may raise distributional concerns that only affluent households can 

afford the types of vehicles that offer the technology. This justification is inconsistent with the 

evidence presented in figure 1 that automakers have significantly increased the availability of 

ADAS on a greater share of new vehicles over time and are expected to continue to do so. We also 

show in figure 8 that the supports of the distributions of manufacturers’ suggested retail prices for 

all ADAS equipped and non-ADAS equipped vehicles in 2019 are nearly identical, indicating that 

ADAS is generally available at all price points for new vehicles, and that consumers can choose 

from either ADAS equipped or non-ADAS equipped vehicles at all price points.  

Given the availability of ADAS in less expensive cars, less-affluent households who value 

ADAS can trade off other amenities to purchase it. However, a government mandate requiring 

automakers to install ADAS in all their new vehicles will not ameliorate distributional concerns. 

Instead, it will  expand the share of new cars that less affluent drivers may find too expensive to 

purchase.  
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Finally, it is important to realize that any government action that seeks to expand the 

adoption of ADAS by the entire US vehicle fleet would not be accomplished in a short period of 

time. Instead, it would take decades for used vehicles that are not equipped with ADAS to be 

scrapped and for new vehicles that are equipped with ADAS and that meet the government’s 

performance standards to fully comprise the vehicle fleet.  For example, Alarfaj, Griffin, and 

Samaras (2020) report that it would take three decades and possibly four to retire the current light 

duty vehicle stock.  

Consider the time it will take for the less ambitious but still challenging goal of requiring 

automatic emergency braking to be installed in all new 2030 model vehicles to have a positive 

effect on safety. All current vehicles with AEB will have to install AEB that meets the higher 

government standards.  All new vehicles must install AEB that meets the government standards. 

As a result, the fleet will be comprised of a majority share of vehicles without AEB for as long as 

those vehicles are on the road and of a smaller but growing share of vehicles with AEB that meets 

the government’s standards. The mix of vehicles with and without AEB will gradually improve, 

but it will take considerable time for the government’s mandate that AEB must be installed in all 

new 2030 models to improve automobile safety sufficiently for the improvement to be detected in 

a time-series analysis of automobile accidents and fatalities.   

 

7. Conclusion 

Historically, automakers’ introduction of a new safety feature has spurred controversy over 

its effectiveness at reducing the probability of fatal and severe injuries, accounting for drivers’ 

behavior in response to the safety feature. After a safety feature has proved to be effective, 

policymakers have often considered whether automakers should be required to install it in all their 

new vehicles.    

We have addressed the first issue empirically in the context of automakers’ introduction of 

ADAS safety features. We have presented causal evidence that ADAS has improved automobile 

safety by significantly reducing the probability of motorists being involved in fatal and nonfatal 

accidents, accounting for the change in drivers’ behavior in response to the installation of those 

safety features in their vehicle. We also have tested for the possibility that our finding could be 

compromised by selectivity bias that could appear in multiple contexts and we have consistently 

rejected that possibility.  
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Our finding that ADAS has improved automobile safety is particularly important because 

it provides early evidence of some of the benefits of vehicle automation in actual travel 

environments.32 We hope that our finding spurs greater interest in the development and widespread 

adoption of fully autonomous vehicles and in the potential benefits of other AI transportation 

technologies (Winston and Karpilow (2020), Winston, Yan, and Associates (2024)) 

Turning to the second issue, government’s role in the adoption of automobile safety 

features has not historically been informed by a careful assessment of the costs and benefits of 

their intervention.  For example, Mannering and Winston (1995) found that, on average, motorists 

were willing to pay the average cost of installing air bags in their vehicles and that automakers 

were steadily installing airbags on those vehicles for which motorists were willing to pay the 

average cost of air bag installation.  Nonetheless, in 1998, federal law required that all cars and 

light trucks sold in the United States have air bags on both sides of the front seat without carefully 

assessing whether such a requirement was justified on cost-benefit grounds, accounting for the 

welfare loss to motorists who valued air bags at less than the cost that was passed through in higher 

vehicle prices.   

The speed with which ADAS safety features have been adopted is notable and our findings 

strongly indicate that motorists have benefited from their effectiveness. At the same time, our 

analysis casts doubt that government’s intervention in the market’s adoption of ADAS by 

mandating them for all vehicles would enhance social welfare. In fact, its recent rule requiring 

automakers to install emergency automatic braking on all new 2030 vehicles appears to be 

premature. Because the market for AI safety technologies is still in the early stage of its 

development, it is important for policymakers to be fully aware of the benefits from the market 

forces underlying consumers’ voluntary adoption of these technologies before making any 

interventions that might turn out to reduce welfare.  

 
32 In the future, when the vehicle capital stock has turned over sufficiently to be comprised of a large share of ADAS-
equipped vehicles, it would be useful to estimate the effect of the staggered adoption of ADAS-equipped vehicles on 
the nation’s automobile fatalities and insurance costs. The latter will reflect a tradeoff between the lower claims caused 
by ADAS’s reduction in accidents and the higher claims caused by ADAS’s increase in the cost of a car and repairs.  



24 
 

Appendix A. Summary of the Data 

As noted, we constructed a data set to analyze the effects of ADAS on all automobile accidents 
that occurred in Texas from 2010 to 2018 by combining information from three main sources: 1) 
all registered vehicles from the Texas Department of Transportation, 2) police accident reports 
from the Texas Department of Public Safety, and 3) trim level vehicle attributes from leading 
vehicle data aggregators. The main challenge to constructing our data set is to link the data from 
all three sources to identify whether ADAS safety technology is available on each vehicle 
registered in Texas.  

The registration data contain the Vehicle Identification Number (VIN) of registered vehicles in 
Texas for the years 2010-2018. The VINs account for all in-state vehicles that were on the road 
during our sample period. Importantly, we are able to observe all the vehicles that were equipped 
with ADAS safety features in a given calendar year, regardless of whether they were involved in 
an accident.  

The Texas police accident reports record all single and multi-vehicle auto accidents in the state of 
Texas involving motorists and pedestrians for the years 2010-2018. Importantly, these accident 
reports also include the VIN of all in-state and out of state vehicles involved in each accident, as 
well as accident severity, which ranges from vehicle damage only to fatalities. Because we have 
no information on out of state vehicles that were not involved in an accident, our initial estimates 
included only in-state vehicles involved in accidents. We then performed a sensitivity analysis 
including in-state and out of state vehicles in accidents in Texas. 

We obtained vehicle attributes down to the trim level by web scraping multiple leading vehicle 
data aggregators, including TrueCar, Inc., MotorTrend, and Kelly Blue Book. The attributes data 
are at the detailed model year-make-model-trim level, which enables us to identify the specific 
safety features of a vehicle that vary at both the model year and the trim level.  

To the link the data from the three sources, we proceeded as follows. First, for a given VIN in the 
registration data, we used a commercially available VIN decoder to obtain a string that describes 
its model year, make, model, and trim (henceforth nameplate).33 Given the large number of 
registered VINs, simply decoding one-by-one was prohibitively time consuming.34 Although 
manufacturers have a certain level of flexibility in terms of what information is encoded in their 
VINs, the make and model year of a VIN is always encoded in the first three and the tenth digit, 
respectively.35 We therefore took a representative sample of more than two million VINs weighted 
by make and model year for decoding. After successfully decoding this sample of VINs and 

 
33 We should point out that not all VIN decoders can decode a VIN to the trim level; most can decode only to the 
model year-make-model level.  For example, NHTSA provides a free VIN decoder that does not decode to the trim 
level. See https://www.nhtsa.gov/vin-decoder. 
34 Decoding the entire registration data would take years. 
35 See https://www.federalregister.gov/documents/2022/03/09/2022-04030/vehicle-identification-number-vin-
requirements-manufacturer-identification-certification-replica. 

https://www.nhtsa.gov/vin-decoder
https://www.federalregister.gov/documents/2022/03/09/2022-04030/vehicle-identification-number-vin-requirements-manufacturer-identification-certification-replica
https://www.federalregister.gov/documents/2022/03/09/2022-04030/vehicle-identification-number-vin-requirements-manufacturer-identification-certification-replica
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obtaining their nameplate, we trained a random forest model to classify the remaining VINs.36 This 
process allowed us to identify the nameplate of each VIN in our registration data.37 

Second, the vehicle attributes data contain detailed information on all the features available for a 
given nameplate, including the safety related features of interest. We provide a summary of the 
trim level features we were able to obtain, including both safety and non-safety related features, at 
the end of this appendix. ADAS safety features, however, are marketed under various names by 
different auto manufacturers with no standardization.  For example, Adaptive Cruise Control is 
called “Intelligent Cruise Control” by Nissan and “Radar Cruise Control with Stop and Go” by 
Mazda, even though both correspond to the same underlying technology. We therefore used various 
string manipulation techniques coupled with manual inspection to correctly identify each ADAS 
safety feature for a given nameplate. 

Third, although the decoder provides a nameplate string for a given VIN, this string rarely matches 
the string we were able to obtain from the wed scraped vehicle attributes data, which prohibits a 
direct merge. For example, the VIN “5J8YD4H05LL024902” is decoded as “2020, Acura, MDX, 
A-SPEC.” Its counterpart in the attributes data is “2020 Acura MDX Technology and A-Spec 
Package,” even though they represent the same nameplate. We therefore used fuzzy string match 
techniques to link the two nameplates. This process allowed us to identify whether ADAS safety 
technology was available for each VIN in our sample.38   

Lastly, because the availability of ADAS safety technology varies at both the model year and trim 
level, we aggregate nameplates to the trim and the first model year that it received ADAS. That is, 
for each vehicle make-model (denoted 𝑖𝑖), we define vehicle type (denoted 𝑗𝑗) as a combination of 
trim and the first model year in which ADAS became available. Specifically, for each type 𝑗𝑗, we 
aggregate all trims of this type by taking averages of other attributes (such as MSRP). Using the 
example in Table 1, all Acura MDX trims that began to receive ADAS in model year 2015 are 
aggregated into the “high” trim; all MDX trims that began to receive ADAS in model year 2018 
but not before are aggregated into the “medium” trim; and the remaining MDX trims that never 
received ADAS are aggregated into the “low” trim.39 In the end, our data construction process 
resulted in 6,268 unique vehicle types (i.e., aggregated trims) that vary at the 𝑦𝑦𝑖𝑖𝑗𝑗 level. This 
allowed us to define our treatment variable, the availability of ADAS (denote by the dummy 
variable 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦) to also vary at the 𝑦𝑦𝑖𝑖𝑗𝑗 level. Specifically, for vehicle type 𝑦𝑦𝑖𝑖𝑗𝑗, 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦 has value 1 if the 
aggregated trim 𝑗𝑗 received ADAS in model year 𝑦𝑦; 0 otherwise. 

 

 
36 We also experimented with other algorithms such as Decision Tree and Naïve Bayes. Random Forest was our 
preferred algorithm given its robustness to overfitting and our large sample size. To further reduce computational 
complexity in this process, we drop the last six digits of each VIN, which only contains a vehicle’s serial number.  
37 We also filtered out VINs that either have model years older than 2000 or pertain to irrelevant vehicle categories, 
such as motorcycles and heavy-duty trailer trucks. 
38 The VIN decoder also provides attribute information, such as MSRP, body type, fuel type. We cross-checked 
attributes from both the decoder and our web scraped data and found that they generally agreed for each nameplate. 
39 Once a trim receives ADAS in a model year, it continues to have ADAS in all subsequent model years. This process 
results in three distinct groups of Acura MDX trims, each with a unique set of aggregated attributes.  
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Appendix B. Summary of Non-ADAS and Non-Safety Related Trim Features 

The non-ADAS and non-safety related trim features that were available for vehicles with high 
trim, but not for vehicles with low trim are as follows:  

Non-ADAS Vehicle Safety Features 

 Rear and side view with simulated aerial camera 

 360 Degree Surround Camera 
 Panoramic View Monitor 

 Digital Backup Sensors 

 Active Blind Spot w/Front Park Sensor 
 Adaptive Light Control 
 Auto-Dimming Rearview Mirror 
 Bi-Xenon Cornering Headlights 
 Black Out LED Daytime Running Lights 
 Enhanced Active Park Assist w/Forward Sensing System 
 Inflatable Rear-Seatbelts 
 Night View Assist PLUS w/Pedestrian Detection 
 Side Curtain and Seat Mounted Side Impact Airbags 
 Trailer Tow Camera System 
 Heated Sideview Mirrors  

Non-Safety Related Trim Features 

Rear power outlet(s) 

Cargo area power outlet(s) 

Anti-Theft Alarm System w/Immobilizer 
Intrusion Sensor 

Heated Windshield Washer Reservoir (SPC) 
Keyless Entry w/Hands-Free Tailgate Opening 
Headlamp Washers 

Premium Leather Collection 

Heated Rear Seats 
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Appendix C.  A Suggestive Calculation of ADAS Externalities 

In this appendix, we propose a suggestive but instructive approach to formally measuring 

the externalities of ADAS using only observational data. Doing so requires certain additional 

assumptions that are not necessary for our main analysis. First, we restrict our attention only to 

multi-vehicle accidents, which is appropriate given the assumption that generally there are no 

direct spillovers in single vehicle accidents. Of course, other spillovers, such as congestion caused 

by rubbernecking following a crash, may occur. Second, we assume for simplicity that all multi-

vehicle accidents involve exactly two vehicles.  

Denote a vehicle of type x as either being never treated (𝑒𝑒 = 0) or treated at some point 

(𝑒𝑒 = 1) and assume there are 𝑁𝑁𝑥𝑥 vehicles of type x on the road. Let 𝑠𝑠𝑥𝑥𝑦𝑦 be the probability a vehicle 

of type x encounters a vehicle of type y on the road (e.g., 𝑠𝑠01 =

Pr [never treated vehicle encounters an eventually treated vehicle]. Similarly, let 𝑒𝑒𝑥𝑥𝑦𝑦 be the 

probability that a vehicle of type x gets in an accident with a vehicle of type y conditional on the 

vehicles encountering each other on the road. Finally, let 𝑛𝑛𝑥𝑥 be the number of accidents involving 

a vehicle of type x. 

If we estimated the accident equation 

𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝛽𝛽 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜖𝜖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦,             (A1) 

which is the OLS analog to the Poisson regression equation (1) on a subsample of multi-vehicle 

accidents, then we could express the parameter of interest 𝛽𝛽 as 

𝛽𝛽 = 𝐸𝐸[𝑛𝑛1 − 𝑛𝑛0]after 1 is treated − 𝐸𝐸[𝑛𝑛1 − 𝑛𝑛0]before 1 is treated  (A2) 

Under the assumption that 𝑁𝑁𝑥𝑥 and 𝑠𝑠𝑥𝑥𝑦𝑦 are unchanged before and after vehicles get treated, then 

all of the observed relative changes in accidents encapsulated in 𝛽𝛽 can be attributed to changes in 

vehicle safety (i.e., 𝑒𝑒𝑥𝑥𝑦𝑦). This allows us to decompose equation (A2) as follows: 

𝛽𝛽 = [𝑁𝑁1𝑒𝑒11𝑠𝑠11 + 𝑁𝑁1𝑒𝑒01𝑠𝑠01 − 𝑁𝑁0𝑒𝑒01𝑠𝑠10 − 𝑁𝑁0𝑒𝑒00𝑠𝑠00] 

                      −[𝑁𝑁1𝑒𝑒00𝑠𝑠11 + 𝑁𝑁1𝑒𝑒00𝑠𝑠01 − 𝑁𝑁0𝑒𝑒00𝑠𝑠10 − 𝑁𝑁0𝑒𝑒00𝑠𝑠00].   (A3) 

Note that all of the conditional accident probabilities in the second term are set to 𝑒𝑒00 because no 

vehicles are treated. The expression in equation (A3) can be further simplified to: 

𝛽𝛽 = 𝑁𝑁1𝑠𝑠11(𝑒𝑒11 − 𝑒𝑒00) + 𝑁𝑁1𝑠𝑠10(𝑒𝑒01 − 𝑒𝑒00)�������������������������
Total Internal Effect

− 𝑁𝑁0𝑠𝑠01(𝑒𝑒01 − 𝑒𝑒00)�����������
Spillover Effect

  (A4) 

 The first term of the total internal effect in equation (6) corresponds to the effect of ADAS 

in accidents when both vehicles are treated, and the second term of the total internal effect 
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corresponds to the effect of ADAS in accidents when only one vehicle is treated. Together they 

comprise the total internal effect of ADAS. Meanwhile, the third term corresponds to the spillover 

effect of ADAS on vehicles that are never treated. Hence our empirical strategy identifies the total 

internal effect of ADAS net of the externality. 

 This decomposition exercise suggests a straightforward approach to estimate the size of 

the spillover. First, we obtain 𝛽𝛽 by estimating equation (A1) with all multivehicle accidents on the 

left hand side. Second, we obtain the first term of equation (A4) by estimating equation (A1) with 

only multivehicle accidents in which both vehicles’ trims are eventually treated on the left hand 

side. Third, we obtain the second term of equation (A4) by estimating equation (A1) with only 

multivehicle accidents in which one vehicle’s trim is eventually treated on the left hand side. The 

spillover effect can then be computed by simply subtracting the first result from the second and 

third results. 

 In Figure 9, we present the results of this decomposition for accidents overall and 

disaggregated by time of day, vehicle speed, and road and travel conditions.40 We find that 

spillovers tend be larger during darkness and on poor road surfaces, which is consistent with ADAS 

being a substitute for driver attention. This point is reinforced for especially dangerous driving 

environments by our finding that the spillover effects of ADAS increase as the speed at which an 

accident occurred increases, with a peak spillover effect at speeds of 75mph or greater.   We also 

find that the spillover effect of ADAS for accidents overall is equal to only 8.3% of the total internal 

effect of ADAS or a little less than one percentage point of our estimated 10% decrease in total 

accidents attributable to ADAS. Accordingly, we conclude that the bias due to contamination is 

unlikely to affect our results in an economically meaningful way.  

 

 

 

 

 

 

 

 
40 We were unable to perform the decomposition exercise for fatal accidents because splitting the dependent variable 
in order to estimate the total internal effect reduced the already low variation in fatal accidents by too much. 
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Table 1. Example of the Data Structure for the Acura MDX 

 Notes: There are three trim levels for the MDX: L, M and H. Trim level H received ADAS safety features in 
model year 2015. Trim level M received ADAS safety features in 2018. 

Treated 
Vehicles 

  2015 H 2015-2016 H 2015-2017 H 2018 M 
2015-2018 H 

2018-2019 M 
2015-2019 H 

        

Untreated 
Vehicles 

2000-2013 L 
2000-2013 M 
2000-2013 H 

2000-2014 L 
2000-2014 M 
2000-2014 H 

2000-2015 L 
2000-2015 M 
2000-2014 H 

2000-2016 L 
2000-2016 M 
2000-2014 H 

2000-2017 L 
2000-2017 M 
2000-2014 H 

2000-2018 L 
2000-2017 M 
2000-2014 H 

2000-2019 L 
2000-2017 M 
2000-2014 H 

Calendar Year 2013 2014 2015 2016 2017 2018 2019 
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Table 2. Effects of ADAS on Accidents and Fatalities  

Dependent Variable All Accidents Fatal Accidents 

 Single 
Veh. 

Multi Veh. Single 
Veh. 

Multi Veh. 

 (1) (2) (3) (4) 

ADAS Safety Features Dummy 0.87*** 

(0.05) 

0.90** 

(0.04) 

0.68** 

(0.13) 

0.98 

(0.13) 

Make-Model-Trim-Calendar Year 
(ijt) FEs? 

Y Y Y Y 

Make-Model-Model Year-
Calendar Year (yt) FEs? 

Y Y Y Y 

     

Pseudo R-squared 0.76 0.87 0.21 0.24 

Number of observations 4,776 4,983 1,643 2,315 

Notes: Incidence Risk Ratios are presented from Poisson maximum likelihood regressions with 
heteroskedasticity robust standard errors clustered by model year-make-model presented in 
parentheses. Vehicle trims that are never equipped with ADAS are excluded. *** 99% 
significance, ** 95% significance, * 90% significance. 
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Table 3. Effects of ADAS on Driving 
Dependent Variable  VMT log(VMT) 
    
  (1) (2) 
ADAS Safety Features Dummy  -31.56 

(138.07) 
0.04 
(0.04) 

Make-Model-Trim-Calendar Year (ijt) 
FEs? 

 Y Y 

Make-Model-Model Year-Calendar Year 
(yt) FEs? 

 Y Y 

    
Pseudo R-squared  0.74 0.77 
Number of observations  6,565 6,464 

Notes: Heteroskedasticity robust standard errors clustered by model year-make-model presented in 
parentheses. Vehicle trims that are never equipped with ADAS are excluded. For registrations, vehicles in 
their first*** 99% significance, ** 95% significance, * 90% significance. 
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Figure 1. Evolution of the Rollout of ADAS 

Panel A: Number of Unique Vehicle Trims over Time 
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Panel B: Share of ADAS Equipped Vehicles over Time 
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Figure 2. Overview of the Data Construction 
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Figure 3. Heterogeneous Effects of ADAS Safety Features on Accident Rate by Vehicle Type 

 

 

Note: Incidence Risk Ratios are presented from Poisson maximum likelihood regressions with 
95% confidence intervals formed form heteroskedasticity robust standard errors clustered by 
model year-make-model. Parameter estimates and confidence intervals are truncated at 2 for 
clarity. 

  



38 
 

Figure 4. Heterogeneous Effects of ADAS Safety Features on Accident Rate by Accident 
Conditions 

 

Note: Incidence Risk Ratios are presented from Poisson maximum likelihood regressions with 
95% confidence intervals formed form heteroskedasticity robust standard errors clustered by 
model year-make-model.  
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Figure 5. Event Study Style Plot of the Effects of ADAS   
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Figure 6. Effects of ADAS by Household Characteristics (IRR) 

 

 

Note: Incidence Risk Ratios are presented from Poisson maximum likelihood regressions with 
95% confidence intervals formed form heteroskedasticity robust standard errors clustered by 
model year-make-model.  
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Figure 7. Crash Rate over Time by Household ADAS Adoption Year  

 

 

Notes: This figure shows the evolution of crash rates of households over time split up by when 
each household first adopted an ADAS enabled vehicle. 
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Figure 8.  Empirical Distributions of Prices for Vehicles With and Without ADAS Safety 
Features  
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Figure 9. External Effects of ADAS 

 

Note: External effects are calculated as described in the text and expressed as a ratio of the overall 
estimated effect. For example, we estimate external benefits of ADAS for all accident types to 
equal roughly 8.3% of the total effect of ADAS as presented in Table 1. 

 

 

 

 


